1
|
Mimura S, Morishita A, Oura K, Takuma K, Nakahara M, Tadokoro T, Fujita K, Tani J, Kobara H. Galectins and Liver Diseases. Int J Mol Sci 2025; 26:790. [PMID: 39859504 PMCID: PMC11766161 DOI: 10.3390/ijms26020790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement. Galectins affect various immune cell processes through both intracellular and extracellular mechanisms and play roles in processes, such as apoptosis, angiogenesis, and fibrosis. Their importance has increased in recent years because they are recognized as biomarkers, therapeutic agents, and drug targets, with many other applications in conditions such as cardiovascular diseases and cancer. However, little is known about the involvement of galectins in liver diseases. Here, we review the functions of various galectins and evaluate their roles in liver diseases.
Collapse
Affiliation(s)
- Shima Mimura
- Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Asiamah N, Sarpong E, Baidoo UY, Eku E, Aidoo I, Doamekpor E, Khan HTA, Danquah E, Yarfi C, Baffoe RS, Manu CA. Discrimination of older peers is associated with workplace age discrimination: moderation by occupational health literacy. BMC Psychol 2024; 12:662. [PMID: 39548584 PMCID: PMC11566144 DOI: 10.1186/s40359-024-02163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Workplace Age Discrimination Experienced (WADE) can be disorientating and detrimental to well-being. Hence, older employees would like to avoid it, but those who experience it may discriminate against their older peers. WADE may be associated with Age Discrimination of Peers (ADP), and this relationship can be moderated by Occupational Health Literacy (OHL). AIM This study aimed to assess the association of WADE with ADP and to ascertain whether this relationship is moderated by OHL. METHODS A cross-sectional design based on a research-reporting checklist was adopted. Measures against confounding and common methods bias were utlised to avoid or minimise bias. The participants were 1025 middle-aged and older employees (average age = 58 years) who were permanent residents of Accra, Ghana. Hierarchical Linear Regression (HLR) analysis was utilised to analyse the data. Curve estimation was among the methods used to assess assumptions governing HLR analysis. RESULTS WADE and OHL were positively associated with ADP, but OHL was negatively associated with WADE in the ultimate models incorporating the covariates. WADE was more positively associated with ADP at moderate and higher OHL, which signified positive moderation of the WADE-ADP relationship by OHL. CONCLUSION Older employees who experience higher age discrimination at work are more likely to discriminate against peers. OHL can be associated with lower WADE but higher ADP. Qualitative studies are needed to understand why OHL may be related to higher ADP.
Collapse
Affiliation(s)
- Nestor Asiamah
- Division of Interdisciplinary Research and Practice, School of Health and Social Care, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom.
- International Public Health Management Programme, University of Europe for Applied Sciences, Reiterweg 26B, Iserlohn, 58636, Germany.
- Research Faculty, Berlin School of Business and Innovation, 97-99 Karl Marx Strasse, Berlin, 12043, Germany.
- Africa Center for Epidemiology, Department of Geriatrics and Gerontology, P. O. Box AN 18462, Accra, Ghana.
| | - Emelia Sarpong
- School of Business, Accra Technical University, P. O Box GP 561, Barnes Road, Accra Metro, Accra, Ghana
| | - Usman Yaw Baidoo
- Department of Business and Social Sciences Education, University of Cape Coast, Private Mail Bag, Cape Coast, Ghana
| | - Eric Eku
- Department of Secretaryship and Management Studies, Dr Hilla Limann Technical University, Upper West, Wa, Ghana
| | - Isaac Aidoo
- Department of Building Technology, Accra Technical University, P.O. Box GP 561, Accra, Ghana
| | - Etornam Doamekpor
- Faculty of Business Administration, KAAF University College, P.O. Box Wu 177, Fetteh Kakraba, Central Region, Ghana
| | - Hafiz T A Khan
- College of Nursing, Midwifery, and Healthcare, University of West London, Paragon House, Boston Manor Road, Brentford, TW8 9GB, United Kingdom
| | - Emelia Danquah
- Research Directorate, Koforidua Technical University, Post Office Box KF-981, Koforidua, Eastern Region, Ghana
| | - Cosmos Yarfi
- Department of Physiotherapy and Rehabilitation Sciences, University of Health and Allied Sciences, Ho, PMB 31, Ghana
| | - Rita Sarkodie Baffoe
- School of Business, Accra Technical University, P. O Box GP 561, Barnes Road, Accra Metro, Accra, Ghana
| | - Christiana Afriyie Manu
- School of Business, Accra Technical University, P. O Box GP 561, Barnes Road, Accra Metro, Accra, Ghana
| |
Collapse
|
3
|
Ling J, You S, Chen W, Yang X, Xv Y, Zhu B. Galectin-9 as a new biomarker of acute-on-chronic liver failure. Sci Rep 2024; 14:22303. [PMID: 39333198 PMCID: PMC11437140 DOI: 10.1038/s41598-024-73397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Galectin-9 (Gal-9) expression in patients with acute-on-chronic liver failure and its correlation with prognosis remain unclear. This study investigated the relationship between liver failure prognosis and Gal-9 expression analysis in patients with acute-on-chronic liver failure. Patients with acute-on-chronic liver failure attributable to hepatitis B and those with chronic hepatitis B were included in this single-center prospective cohort study. The Gal-9 levels in the acute-on-chronic liver failure group were significantly higher than those in the chronic hepatitis B group, and there was an upregulation of Gal-9 and T-cell immunoglobulin domain and mucin domain-3 expressions in peripheral blood T cells. Gal-9 was localized in the regenerative areas of liver tissues in patients with acute-on-chronic liver failure, co-localizing with Kupffer cells. Kaplan-Meier survival curves showed that patients with Gal-9 levels < 9.6 ng/ml had a worse prognosis, with the area under the receiver operating characteristic curve (AUC-ROC) being similar to that of the Model for End-Stage Liver Disease score. The combined ROC curve of the two had better predictive performance, with an AUC of 0.945. High Gal-9 levels in liver regenerative areas can serve as a prognostic marker, indicating a better prognosis for patients with hepatitis B virus-acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Jun Ling
- Hepatology Department, The Fifth Medical Center of Chinese PLA General Hospital, No. 100, Xisi Huanzhong Road, Beijing, 10039, China
| | - Shaoli You
- Hepatology Department, The Fifth Medical Center of Chinese PLA General Hospital, No. 100, Xisi Huanzhong Road, Beijing, 10039, China
| | - Weiwei Chen
- Infectious Disease Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 10039, China
| | - Xinxin Yang
- Infectious Disease Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 10039, China
| | - Yiwen Xv
- Hepatology Department, The Fifth Medical Center of Chinese PLA General Hospital, No. 100, Xisi Huanzhong Road, Beijing, 10039, China
| | - Bing Zhu
- Hepatology Department, The Fifth Medical Center of Chinese PLA General Hospital, No. 100, Xisi Huanzhong Road, Beijing, 10039, China.
| |
Collapse
|
4
|
Chen PK, Hsu WF, Peng CY, Liao TL, Chang SH, Chen HH, Chen CH, Chen DY. Significant association of elevated serum galectin-9 levels with the development of non-alcoholic fatty liver disease in patients with rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1347268. [PMID: 38371515 PMCID: PMC10869587 DOI: 10.3389/fmed.2024.1347268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is prevalent among rheumatoid arthritis (RA) patients, but its pathogenesis has rarely been explored. Galectin-9 (Gal-9) interacts with T cell immunoglobulin and mucin-containing-molecule-3 (TIM-3) expressed on hepatocytes and thus regulates T cell proliferation in a murine model of NAFLD. We aimed to examine the pathogenic role of the Gal-9/TIM-3 pathway in RA-NAFLD. Methods Serum levels of Gal-9, soluble TIM-3 (sTIM-3), fatty acid-binding proteins (FABP)1, and FABP4 were determined by ELISA in forty-five RA patients and eleven healthy participants. Using Oil-red O staining and immunoblotting, we examined the effects of Gal-9 and free fatty acid (FFA) on lipid accumulation in human hepatocytes and FABP1 expression. Results Serum Gal-9, sTIM-3 and FABP1 level were significantly higher in RA patients (median 5.02 ng/mL, 3.42 ng/mL, and 5.76 ng/mL, respectively) than in healthy participants (1.86 ng/mL, 0.99 ng/mL, and 0.129 ng/mL, all p < 0.001). They were also significantly higher in patients with moderate-to-severe NAFLD compared with none-to-mild NAFLD (p < 0.01; p < 0.05; and p < 0.01, respectively). Serum Gal-9 levels were positively correlated with sTIM-3, FABP1, FABP4 levels, and ultrasound-fatty liver score, respectively, in RA patients. Multivariate regression analysis revealed that Gal-9 (cut-off>3.30) was a significant predictor of NAFLD development, and Gal-9 and sTIM-3 were predictors of NAFLD severity (both p < 0.05). The cell-based assay showed that Gal-9 and FFA could upregulate FABP1 expression and enhance lipid droplet accumulation in hepatocytes. Conclusion Elevated levels of Gal-9 and sTIM3 in RA patients with NAFLD and their positive correlation with NAFLD severity suggest the pathogenic role of Gal-9 signaling in RA-related NAFLD.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Fan Hsu
- College of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yuan Peng
- College of Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsai-Ling Liao
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Hsin Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hua Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of General Medicine, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States
- Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
6
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
7
|
Wang MX, Luo W, Ye L, Jin LM, Yang B, Zhang QH, Qian JC, Wang Y, Zhang Y, Liang G. Dectin-1 plays a deleterious role in high fat diet-induced NAFLD of mice through enhancing macrophage activation. Acta Pharmacol Sin 2023; 44:120-132. [PMID: 35689091 DOI: 10.1038/s41401-022-00926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
The innate immune response and inflammation contribute to hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Dectin-1 is a pathogen recognition receptor in innate immunity. In this study, we investigated the role of Dectin-1 in the pathogenesis of NAFLD. We first showed that Dectin-1 expression was significantly elevated in liver tissues of patients with NASH. NAFLD was induced in mice by feeding high fat diet (HFD) for 24 weeks. At the end of treatment, mice were sacrificed, and their blood and liver tissues were collected for analyses. We showed HFD feeding also increased liver Dectin-1 levels in mice, associated with macrophage infiltration. Either gene knockout or co-administration of a Dectin-1 antagonist laminarin (150 mg/kg twice a day, ip, from 16th week to 24th week) largely protected the livers from HFD-induced lipid accumulation, fibrosis, and elaboration of inflammatory responses. In primary mouse peritoneal macrophages (MPMs), challenge with palmitate (PA, 200 μM), an abundant saturated fatty acid found in NAFLD, significantly activated Dectin-1 signaling pathway, followed by transcriptionally regulated production of pro-inflammatory cytokines. Dectin-1 was required for hepatic macrophage activation and inflammatory factor induction. Condition media generated from Dectin-1 deficient macrophages failed to cause hepatocyte lipid accumulation and hepatic stellate activation. In conclusion, this study provides the primary evidence supporting a deleterious role for Dectin-1 in NAFLD through enhancing macrophage pro-inflammatory responses and suggests that it can be targeted to prevent inflammatory NAFLD.
Collapse
Affiliation(s)
- Min-Xiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei-Ming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian-Hui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian-Chang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
8
|
Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection. Viruses 2022; 14:v14071538. [PMID: 35891518 PMCID: PMC9317111 DOI: 10.3390/v14071538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells mount an immune response against hepatitis C virus (HCV) infection and can be activated by several cytokines, including interleukin-2 (IL-2), IL-15, and interferon-alpha (IFN-α). By exploiting the Huh7.5 hepatoma cell line infected with the HCV JFH1 genome, we provide novel insights into the antiviral effector functions of human primary NK cells after cytokine stimulation. NK cells activated with IFN-α (IFNα-NKs) had enhanced contact-dependent and -independent responses as compared with NK cells activated with IL-2/IL-15 (IL2/IL15-NKs) and could inhibit HCV replication both in vitro and in vivo. Importantly, IFN-α, but not IL-2/IL-15, protected NK cells from the functional inhibition exerted by HCV. By performing flow cytometry, multiplex cytokine profiling, and mass-spectrometry-based proteomics, we discovered that IFNα-NKs secreted high levels of galectin-9 and interferon-gamma (IFN-γ), and by conducting neutralization assays, we confirmed the major role of these molecules in HCV suppression. We speculated that galectin-9 might act extracellularly to inhibit HCV binding to host cells and downstream infection. In silico approaches predicted the binding of HCV envelope protein E2 to galectin-9 carbohydrate-recognition domains, and co-immunoprecipitation assays confirmed physical interaction. IFN-γ, on the other hand, triggered the intracellular expressions of two antiviral gate-keepers in target cells, namely, myxovirus-1 (MX1) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Collectively, our data add more complexity to the antiviral innate response mediated by NK cells and highlight galectin-9 as a key molecule that might be exploited to neutralize productive viral infection.
Collapse
|
9
|
Iqbal AJ, Krautter F, Blacksell IA, Wright RD, Austin-Williams SN, Voisin MB, Hussain MT, Law HL, Niki T, Hirashima M, Bombardieri M, Pitzalis C, Tiwari A, Nash GB, Norling LV, Cooper D. Galectin-9 mediates neutrophil capture and adhesion in a CD44 and β2 integrin-dependent manner. FASEB J 2021; 36:e22065. [PMID: 34847625 DOI: 10.1096/fj.202100832r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023]
Abstract
Neutrophil trafficking is a key component of the inflammatory response. Here, we have investigated the role of the immunomodulatory lectin Galectin-9 (Gal-9) on neutrophil recruitment. Our data indicate that Gal-9 is upregulated in the inflamed vasculature of RA synovial biopsies and report the release of Gal-9 into the extracellular environment following endothelial cell activation. siRNA knockdown of endothelial Gal-9 resulted in reduced neutrophil adhesion and neutrophil recruitment was significantly reduced in Gal-9 knockout mice in a model of zymosan-induced peritonitis. We also provide evidence for Gal-9 binding sites on human neutrophils; Gal-9 binding induced neutrophil activation (increased expression of β2 integrins and reduced expression of CD62L). Intra-vital microscopy confirmed a pro-recruitment role for Gal-9, with increased numbers of transmigrated neutrophils following Gal-9 administration. We studied the role of both soluble and immobilized Gal-9 on human neutrophil recruitment. Soluble Gal-9 significantly strengthened the interaction between neutrophils and the endothelium and inhibited neutrophil crawling on ICAM-1. When immobilized, Gal-9 functioned as an adhesion molecule and captured neutrophils from the flow. Neutrophils adherent to Gal-9 exhibited a spread/activated phenotype that was inhibited by CD18 and CD44 neutralizing antibodies, suggesting a role for these molecules in the pro-adhesive effects of Gal-9. Our data indicate that Gal-9 is expressed and released by the activated endothelium and functions both in soluble form and when immobilized as a neutrophil adhesion molecule. This study paves the way for further investigation of the role of Gal-9 in leukocyte recruitment in different inflammatory settings.
Collapse
Affiliation(s)
- Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Isobel A Blacksell
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Rachael D Wright
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Shani N Austin-Williams
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Mohammed T Hussain
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hannah L Law
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Toshiro Niki
- Research Division, GalPharma Company, Ltd., Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Michele Bombardieri
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham, Birmingham, UK
| | - Gerard B Nash
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Ocker M, Mayr C, Kiesslich T, Stintzing S, Neureiter D. Immunmodulatory Treatment Strategies of Hepatocellular Carcinoma: From Checkpoint Inhibitors Now to an Integrated Approach in the Future. Cancers (Basel) 2021; 13:1558. [PMID: 33805268 PMCID: PMC8036419 DOI: 10.3390/cancers13071558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) still represents a human tumor entity with very limited therapeutic options, especially for advanced stages. Here, immune checkpoint modulating drugs alone or in combination with local ablative techniques could open a new and attractive therapeutic "door" to improve outcome and response rate for patients with HCC. METHODS Published data on HCC experimental to pre-(clinical) treatment strategies from standard of care to novel immunomodulatory concepts were summarized and discussed in detail. RESULTS Overall, our knowledge of the role of immune checkpoints in HCC is dramatically increased in the last years. Experimental and pre-clinical findings could be translated to phase 1 and 2 clinical trials and became standard of care. Local ablative techniques of HCC could improve the effectivity of immune checkpoint inhibitors in situ. CONCLUSIONS This review demonstrates the importance of immunomodulatory treatment strategies of HCC, whereby the "best treatment code" of immune checkpoint drugs, combination with ablative techniques and of timing must be evaluated in coming clinical trials.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Gastroenterology (Campus Benjamin Franklin), Charité University Medicine Berlin, 10117 Berlin, Germany;
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim, Germany
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (C.M.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University, University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (C.M.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University, University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Sebastian Stintzing
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, University Hospital Salzburg (SALK), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
12
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol 2020; 130:105881. [PMID: 33181315 DOI: 10.1016/j.biocel.2020.105881] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
Galectin-3 is a beta-galactoside-binding mammalian lectin and part of the 15 member galectin family that are evolutionarily highly conserved. It is the only chimeric protein with a C-terminal carbohydrate recognition domain (CRD) linked to a proline, glycine, and tyrosine rich additional N-terminal domain. Galectin-3 binds several cell surface glycoproteins via its CRD domain as well as undergoing oligomerization, via binding at the N-terminal or the CRD, resulting in the formation of a galectin-3 lattice on the cell surface. The galectin-3 lattice has been regarded as being a crucial mechanism whereby extracellular galectin-3 modulates cellular signalling by prolonging retention time or retarding lateral movement of cell surface receptors in the plasma membrane. As such galectin-3 can regulate various cellular functions such as diffusion, compartmentalization and endocytosis of plasma membrane glycoproteins and glycolipids and the functionality of membrane receptors. In multiple models of organ fibrosis, it has been demonstrated that galectin-3 is potently pro-fibrotic and modulates the activity of fibroblasts and macrophages in chronically inflamed organs. Increased galectin-3 expression also activates myofibroblasts resulting in scar formation and may therefore impact common fibrotic pathways leading to fibrosis in multiple organs. Over the last decade there has been a marked increase in the scientific literature investigating galectin-3 in a range of fibrotic diseases as well as the clinical development of new galectin-3 inhibitors. In this review we will examine the role of galectin-3 in fibrosis, the therapeutic strategies for inhibiting galectin-3 in fibrotic disease and the clinical landscape to date.
Collapse
|
14
|
Sun MJ, Cao ZQ, Leng P. The roles of galectins in hepatic diseases. J Mol Histol 2020; 51:473-484. [PMID: 32734557 DOI: 10.1007/s10735-020-09898-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
Hepatic diseases include all diseases that occur in the liver, including hepatitis, cirrhosis, hepatocellular carcinoma, etc. Hepatic diseases worldwide are characterized by high incidences of digestive system diseases, which present with subtle symptoms, are difficult to treat and have high mortality. Galectins are β-galactoside-binding proteins that have been found to be aberrantly expressed during hepatic disease progression. An increasing number of studies have shown that abnormal expression of galectins is extensively involved in hepatic diseases, such as hepatocellular carcinoma (HCC), liver cirrhosis, hepatitis and liver fibrosis. Galectins function as intracellular and extracellular hepatic disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates expressed in hepatocytes. In this review, we summarize current research on the various roles of galectins in cirrhosis, hepatitis, liver fibrosis and HCC, which may provide a preliminary theoretical basis for the exploration of new targets for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Mei-Juan Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Zhan-Qi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
15
|
Premeaux TA, Javandel S, Hosaka KRJ, Greene M, Therrien N, Allen IE, Corley MJ, Valcour VG, Ndhlovu LC. Associations Between Plasma Immunomodulatory and Inflammatory Mediators With VACS Index Scores Among Older HIV-Infected Adults on Antiretroviral Therapy. Front Immunol 2020; 11:1321. [PMID: 32695109 PMCID: PMC7338430 DOI: 10.3389/fimmu.2020.01321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of age-related comorbidities is increased in people living with HIV, even in those well-controlled on combination antiretroviral therapy (ART). Persistent immune activation and inflammation may play pivotal roles in the pathogenesis; however, the burden of morbidities in the older HIV infected population may be exacerbated and driven by distinct mechanisms. In a cross sectional study of 45 HIV-infected participants 60 years or older, we examined the relationships between 14 immunomodulatory and inflammatory factors and the Veterans Aging Cohort Study (VACS) Index, a metric of multimorbidity and mortality comprised of age, CD4 count, hemoglobin, Fibrosis-4 [FIB-4], and estimated glomerular filtration rate [eGFR], by linear regression analysis. All participants were virally suppressed (<50 HIV RNA copies/mL), on ART, and primarily Caucasian (86.7%), and male (91.1%). Plasma levels of monocyte/macrophage-associated (neopterin, IP-10, sCD163, sCD14, and MCP-1) and glycan-binding immunomodulatory factors (galectin (Gal)-1, Gal-3, and Gal-9) were assessed, as well as inflammatory biomarkers previously linked to the VACS Index (i.e., CRP, cystatin C, TNF-α, TNFRI, IL-6, and D-dimer) for comparison. In regression analysis, higher VACS index scores were associated with higher levels of neopterin, cystatin C, TNFRI, and Gal-9 (all p < 0.05), potentially driven by correlations found with individual VACS components, including age, CD4 count, FIB-4, and eGFR. Gal-9, cystatin C, and TNFRI directly correlated with the extent of multimorbidity. Multiple correlations among markers were observed, suggesting an interplay of overlapping, but distinct, pathways. Collectively, in addition to cystatin C and TNFRI, both galectin-9 and neopterin, independently emerged as novel fluid markers of the VACS Index and burden of comorbidity and may further guide in understanding pathogenic mechanisms of age-related disorders in older HIV-infected individuals on suppressive ART.
Collapse
Affiliation(s)
- Thomas A Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kalei R J Hosaka
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Meredith Greene
- Division of Geriatric Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nicholas Therrien
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Victor G Valcour
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Division of Geriatric Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.,Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
16
|
Wang L, Wang YS, Mugiyanto E, Chang WC, Yvonne Wan YJ. MiR-22 as a metabolic silencer and liver tumor suppressor. LIVER RESEARCH 2020; 4:74-80. [PMID: 33005474 PMCID: PMC7523703 DOI: 10.1016/j.livres.2020.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With obesity rate consistently increasing, a strong relationship between obesity and fatty liver disease has been discovered. More than 90% of bariatric surgery patients also have non-alcoholic fatty liver diseases (NAFLDs). NAFLD and non-alcoholic steatohepatitis (NASH), which are the hepatic manifestations of metabolic syndrome, can lead to liver carcinogenesis. Unfortunately, there is no effective medicine that can be used to treat NASH or liver cancer. Thus, it is critically important to understand the mechanism underlying the development of these diseases. Extensive evidence suggests that microRNA 22 (miR-22) can be a diagnostic marker for liver diseases as well as a treatment target. This review paper focuses on the roles of miR-22 in metabolism, steatosis, and liver carcinogenesis. Literature search is limited based on the publications included in the PubMed database in the recent 10 years.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA,The College of Life Science, Yangtze University, Jingzhou, Hubei
| | - Yu-Shiuan Wang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
| | - Eko Mugiyanto
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
| | - Wei-Chiao Chang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei,Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
17
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
18
|
Hsu YA, Chang CY, Lan JL, Li JP, Lin HJ, Chen CS, Wan L, Liu FT. Amelioration of bleomycin-induced pulmonary fibrosis via TGF-β-induced Smad and non-Smad signaling pathways in galectin-9-deficient mice and fibroblast cells. J Biomed Sci 2020; 27:24. [PMID: 31937306 PMCID: PMC6961390 DOI: 10.1186/s12929-020-0616-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background Galectin-9 is a β-galactoside-binding protein with two carbohydrate recognition domains. Recent studies have revealed that galectin-9 regulates cellular biological reactions and plays a pivotal role in fibrosis. The aim of this study was to determine the role of galectin-9 in the pathogenesis of bleomycin-induced systemic sclerosis (SSc). Methods Human galectin-9 levels in the serum of patients with SSc and mouse sera galectin-9 levels were measured by a Bio-Plex immunoassay and enzyme-linked immunosorbent assay. Lung fibrosis was induced using bleomycin in galectin-9 wild-type and knockout mice. The effects of galectin-9 on the fibrosis markers and signaling molecules in the mouse lung tissues and primary lung fibroblast cells were assessed with western blotting and quantitative polymerase chain reaction. Results Galectin-9 levels in the serum were significantly higher (9-fold) in patients compared to those of healthy individuals. Galectin-9 deficiency in mice prominently ameliorated epithelial proliferation, collagen I accumulation, and α-smooth muscle actin expression. In addition, the galectin-9 knockout mice showed reduced protein expression levels of fibrosis markers such as Smad2/3, connective tissue growth factor, and endothelin-1. Differences between the wild-type and knockout groups were also observed in the AKT, mitogen-activated protein kinase, and c-Jun N-terminal kinase signaling pathways. Galectin-9 deficiency decreased the signal activation induced by transforming growth factor-beta in mouse primary fibroblasts, which plays a critical role in fibroblast activation and aberrant catabolism of the extracellular matrix. Conclusions Our findings suggest that lack of galectin-9 protects against bleomycin-induced SSc. Moreover, galectin-9 might be involved in regulating the progression of fibrosis in multiple pathways.
Collapse
Affiliation(s)
- Yu-An Hsu
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Ching-Yao Chang
- Department of Biotechnology, Asia University, Taichung, 40402, Taiwan
| | - Joung-Liang Lan
- Rheumatology Research Center, China Medical University Hospital, Taichung, 40402, Taiwan.,School of Medicine, China Medical University, Taichung, 40402, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Ju-Pi Li
- Rheumatology Research Center, China Medical University Hospital, Taichung, 40402, Taiwan.,School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Department of Ophthalmology, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Chih-Sheng Chen
- Division of Chinese Traumatology, China Medical University Hospital, Taichung, 40402, Taiwan.,Division of Chinese Medicine, Asia University Hospital, Taichung, 40402, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 40402, Taiwan. .,Department of Gynecology, China Medical University Hospital, Taichung, 40402, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, 95816, USA.
| |
Collapse
|
19
|
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:396. [PMID: 31500650 PMCID: PMC6734524 DOI: 10.1186/s13046-019-1396-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the most common primary liver malignancy and the third leading cause of tumor-related mortality worldwide. Unfortunately, despite advances in HCC treatment, less than 40% of HCC patients are eligible for potentially curative therapies. Recently, cancer immunotherapy has emerged as one of the most promising approaches for cancer treatment. It has been proven therapeutically effective in many types of solid tumors, such as non-small cell lung cancer and melanoma. As an inflammation-associated tumor, it's well-evidenced that the immunosuppressive microenvironment of HCC can promote immune tolerance and evasion by various mechanisms. Triggering more vigorous HCC-specific immune response represents a novel strategy for its management. Pre-clinical and clinical investigations have revealed that various immunotherapies might extend current options for needed HCC treatment. In this review, we provide the recent progress on HCC immunology from both basic and clinical perspectives, and discuss potential advances and challenges of immunotherapy in HCC.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Humans
- Immunity, Innate
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Translational Research, Biomedical
- Treatment Outcome
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
20
|
Matsuoka N, Kozuru H, Koga T, Abiru S, Yamasaki K, Komori A, Fujita Y, Tenmoku J, Asano T, Sato S, Suzuki E, Furuya M, Kobayashi H, Watanabe H, Naganuma A, Yoshizawa K, Shimada M, Ario K, Yamashita H, Kohno H, Kaneyoshi T, Nakamura M, Furukawa H, Takahashi A, Kawakami A, Ohira H, Yatsuhashi H, Migita K. Galectin-9 in autoimmune hepatitis: Correlation between serum levels of galectin-9 and M2BPGi in patients with autoimmune hepatitis. Medicine (Baltimore) 2019; 98:e16924. [PMID: 31464928 PMCID: PMC6736219 DOI: 10.1097/md.0000000000016924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a disorder of unknown etiology in which immune-mediated liver damage progresses to cirrhosis or hepatocellular carcinoma (HCC). The mainstay therapy for AIH is steroids and other immunosuppressive treatments. Currently, there are no validated markers for monitoring immune-mediated hepatic inflammation. Galectin-9 has recently been identified as a potential biomarker in patients with chronic liver disease. The objective of this study was to determine whether Galectin-9 and other serum proteins are associated with active disease in AIH patients.We enrolled 77 Japanese patients with well-documented AIH who were identified from the National Hospital Organization-AIH-liver-network database, as well as 32 patients with chronic hepatitis C (CHC), 27 patients with SLE, and 17 healthy control subjects. Serum levels of galectin-9, and markers of liver injury were measured and compared between groups.Serum levels of galectin-9 were significantly higher in AIH patients than in CHC patients (13.8 ± 4.9 ng/mL vs 8.9 ± 3.0 ng/mL, P < .001) or healthy controls (13.8 ± 4.9 ng/mL vs 5.0 ± 1.3 ng/mL, P < .001). In AIH group, serum galectin-9 levels weakly correlated with alanine aminotransferase levels or total bilirubin (TB) and strongly correlated with C-X-C motif chemokine 10 (CXCL10) and Mac-2 binding protein glycosylation isomer (M2BPGi) levels, but did not correlate with the histological grade of liver fibrosis. Steroid treatment of AIH patients significantly reduced serum galectin-9 levels (14.1 ± 4.9 ng/mL vs 8.3 ± 3.8 ng/mL, P < .001). SLE patients exhibited higher galectin-9 levels, whereas the galectin-9 levels did not correlate with liver function tests such as alanine aminotransferase levels.Serum galectin-9 correlated with disease status in AIH patients and could thus be useful biomarkers to detect hepatic autoimmunity. Because circulating galectin-9 reflects autoimmune-mediated inflammation, it may have additional utility as a biomarker for other autoimmune disorders.
Collapse
Affiliation(s)
- Naoki Matsuoka
- Clinical Research Center, Nagasaki Medical Center, Nagasaki
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Hideko Kozuru
- Clinical Research Center, Nagasaki Medical Center, Nagasaki
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki
| | - Seigo Abiru
- Clinical Research Center, Nagasaki Medical Center, Nagasaki
| | | | | | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Junpei Tenmoku
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Eiji Suzuki
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Makiko Furuya
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University, Fukushima
| | - Atsushi Naganuma
- National Hospital Organization, Takasaki Medical Center, Takasaki
| | - Kaname Yoshizawa
- National Hospital Organization, Shinsyu-Ueda Medical Center, Ueda, Nagano
| | - Masaaki Shimada
- National Hospital Organization, Nagoya Medical Center, Nagoya, Aichi
| | - Keisuke Ario
- National Hospital Organization, Ureshino Medical Center, Ureshino, Saga
| | | | - Hiroshi Kohno
- National Hospital Organization, Kure Medical Center, Kure
| | - Toshihiko Kaneyoshi
- National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima
| | - Minoru Nakamura
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki
| | - Hiroshi Furukawa
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | | | - Kiyoshi Migita
- Clinical Research Center, Nagasaki Medical Center, Nagasaki
- Department of Rheumatology, Fukushima Medical University, Fukushima
| |
Collapse
|
21
|
Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels. Sci Rep 2019; 9:10677. [PMID: 31337865 PMCID: PMC6650499 DOI: 10.1038/s41598-019-47235-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor expression of immune co-inhibitory ligands, such as PD-L1 and Galectin-9, have potential prognostic value in Hepatocellular Carcinoma (HCC). Circulating levels of these molecules, however, have hardly been studied. This study aims to assess the prognostic significance of circulating PD-L1 and circulating Galectin-9 in patients with resected HCC, and to compare their prognostic significance to the intra-tumoral expression of these same molecules. Archived tissues and stored peripheral blood samples from 81 patients who underwent HCC resection or liver transplantation, with curative intent, were used. Immunohistochemistry was performed to determine intra-tumoral expression of PD-L1 and Galectin-9, while ELISA was used to quantify their respective circulating levels. High circulating PD-L1 (HR 0.12, 95%CI 0.16-0.86, p = 0.011) and high circulating Galectin-9 (HR 0.11, 95%CI 0.15-0.85, p = 0.010) levels were both associated with improved HCC-specific survival. Surprisingly, there was no correlation between circulating levels of PD-L1 and Galectin-9 and their intra-tumoral expression levels. In fact, circulating levels of PD-L1 and Galectin-9 were predictive of HCC-specific survival independently of intra-tumoral levels and baseline clinicopathologic characteristics. Combined analysis of circulating levels and intra-tumoral expression of PD-L1 (HR 0.33, 95%CI 0.16-0.68, p = 0.002) and Galectin-9 (HR 0.27, 95%CI 0.13-0.57, p = 0.001) resulted in more confident prediction of survival. In conclusion, circulating PD-L1 and Galectin-9 levels prognostically differentiate resected HCC patients, independently of their intra-tumoral expression. Combining circulating and intra-tumoral expression levels of PD-L1 or Galectin-9 further improves the prognostic values of these immune biomarkers.
Collapse
|