1
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
2
|
Samarasinghe SM, Hewage AS, Siriwardana RC, Tennekoon KH, Niriella MA, De Silva S. Genetic and metabolic aspects of non-alcoholic fatty liver disease (NAFLD) pathogenicity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:53. [DOI: 10.1186/s43042-023-00433-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease showing a rising prevalence globally. Genetic predisposition plays a key role in the development and progression of the disease pathogenicity.
Main body
This paper summarizes genetic associations based on their influence on several metabolic aspects such as lipid metabolism, glucose metabolism, hepatic iron accumulation and cholesterol metabolism toward the NAFLD pathogenicity. Furthermore, we present variations in some epigenetic characters and the microRNA profile with regard to NAFLD.
Conclusion
As reported in many studies, the PNPLA3 rs738409 variant seems to be significantly associated with NAFLD susceptibility. Other gene variants like TM6SF2 rs58542926, MBOAT7 rs641738 and GCKR variants also appear to be more prevalent among NAFLD patients. We believe these genetic variants may provide insights into new trends in developing noninvasive biomarkers and identify their suitability in clinical practice in the future.
Graphical abstract
Collapse
|
3
|
Sang L, Wang X, Bai W, Shen J, Zeng Y, Sun J. The role of hepatocyte nuclear factor 4α (HNF4α) in tumorigenesis. Front Oncol 2022; 12:1011230. [PMID: 36249028 PMCID: PMC9554155 DOI: 10.3389/fonc.2022.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 Alpha (HNF4α) is a master transcription factor mainly expressed in the liver, kidney, intestine and endocrine pancreas. It regulates multiple target genes involved in embryonic development and metabolism. HNF4α-related diseases include non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and diabetes mellitus. Recently, HNF4α has been emerging as a key player in a variety of cancers. In this review, we summarized the role and mechanism of HNF4α in different types of cancers, especially in liver and colorectal cancer, aiming to provide additional guidance for intervention of these diseases.
Collapse
Affiliation(s)
- Lei Sang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junling Shen
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Conjugated Linoleic Acid Treatment Attenuates Cancerous features in Hepatocellular Carcinoma Cells. Stem Cells Int 2022; 2022:1850305. [PMID: 36132168 PMCID: PMC9484933 DOI: 10.1155/2022/1850305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background. A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers’ attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2
-chloro-5
-nitrobenzenesulfonyl)−2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. Results. In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. Conclusion. CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.
Collapse
|
5
|
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD), previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease worldwide. Many risk factors contribute to the pathogenesis of MAFLD with metabolic dysregulation being the final arbiter of its development and progression. MAFLD poses a substantial economic burden to societies, which based on current trends is expected to increase over time. Numerous studies have addressed various aspects of MAFLD from its risk associations to its economic and social burden and clinical diagnosis and management, as well as the molecular mechanisms linking MAFLD to end-stage liver disease and hepatocellular carcinoma. This review summarizes current understanding of the pathogenesis of MAFLD and related diseases, particularly liver cancer. Potential therapeutic agents for MAFLD and diagnostic biomarkers are discussed.
Collapse
|
6
|
Gonzalez RS, Raza A, Propst R, Adeyi O, Bateman J, Sopha SC, Shaw J, Auerbach A. Recent Advances in Digestive Tract Tumors: Updates From the 5th Edition of the World Health Organization "Blue Book". Arch Pathol Lab Med 2021; 145:607-626. [PMID: 32886739 DOI: 10.5858/arpa.2020-0047-ra] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The World Health Organization Classification of Tumours: Digestive System Tumors, 5th edition, was published in 2019 and shows several impactful changes as compared with the 4th edition published in 2010. Changes include a revised nomenclature of serrated lesions and revamping the classification of neuroendocrine neoplasms. Appendiceal goblet cell adenocarcinoma is heavily revised, and intrahepatic cholangiocarcinoma is split into 2 subtypes. New subtypes of colorectal carcinoma and hepatocellular carcinoma are described. Precursor lesions are emphasized with their own entries, and both dysplastic and invasive lesions are generally recommended to be graded using a 2-tier system. Hematolymphoid tumors, mesenchymal tumors, and genetic tumor syndromes each have their own sections in the 5th edition. New hematolymphoid lesions include monomorphic epitheliotropic intestinal T-cell lymphoma; duodenal-type follicular lymphoma; intestinal T-cell lymphoma, not otherwise specified; and indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. This paper will provide an in-depth look at the changes in the 5th edition as compared with the 4th edition. OBJECTIVE.— To provide a comprehensive, in-depth update on the World Health Organization classification of digestive tumors, including changes to nomenclature, updated diagnostic criteria, and newly described entities. DATA SOURCES.— The 5th edition of the World Health Organization Classification of Tumours: Digestive System Tumours, as well as the 4th edition. CONCLUSIONS.— The World Health Organization has made many key changes in its newest update on tumors of the digestive system. Pathologists should be aware of these changes and incorporate them into their practice as able or necessary.
Collapse
Affiliation(s)
- Raul S Gonzalez
- The Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (Gonzalez)
| | - Anwar Raza
- The Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, California (Raza, Propst)
| | - Robert Propst
- The Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, California (Raza, Propst)
| | - Oyedele Adeyi
- The Department of Pathology, University of Minnesota, Minneapolis (Adeyi, Bateman)
| | - Justin Bateman
- The Department of Pathology, University of Minnesota, Minneapolis (Adeyi, Bateman)
| | - Sabrina C Sopha
- The Department of Pathology, University of Maryland Baltimore Washington Medical Center, Glen Burnie (Sopha)
| | - Janet Shaw
- The Joint Pathology Center, Silver Spring, Maryland (Shaw, Auerbach)
| | - Aaron Auerbach
- The Joint Pathology Center, Silver Spring, Maryland (Shaw, Auerbach)
| |
Collapse
|
7
|
Wen X, Zhang J, Yang W, Nie X, Gui R, Shan D, Huang R, Deng H. CircRNA-016901 silencing attenuates irradiation-induced injury in bone mesenchymal stem cells via regulating the miR-1249-5p/HIPK2 axis. Exp Ther Med 2021; 21:355. [PMID: 33732328 PMCID: PMC7903417 DOI: 10.3892/etm.2021.9786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, bone marrow transplantation remains the basic treatment for various hematological tumors and irradiation is one of the most important pretreatment methods. However, irradiation pretreatment may result in damage to bone mesenchymal stem cells (BMSCs). The present study aimed to investigate the effect of circular RNA-016901 (circ-016901) on the injury of irradiation-induced BMSCs and the underlying mechanism. The expression levels of circ-016901, microRNA-1249-5p (miR-1249-5p) and homeodomain interacting protein kinase 2 (HIPK2) in irradiation-induced mouse BMSCs at various irradiation doses were detected via reverse transcription-quantitative PCR (RT-qPCR). The effect of circ-016901 on cell proliferation was examined using Cell Counting Kit-8 assays following silencing or overexpression of circ-016901. Cell apoptosis was detected by flow cytometry and caspase-3/7 activity. The expression of autophagy-related markers, including Beclin-1 and LC3-II/I, was detected at the mRNA and protein levels by RT-qPCR and western blotting, respectively. Irradiation treatment upregulated the expression of circ-016901 and HIPK2 and downregulated miR-1249-5p expression. The expression levels of LC3-II/I and Beclin-1 in BMSCs were downregulated in a dose-dependent manner. Silencing of circ-016901 promoted proliferation of irradiation-induced BMSCs and attenuated irradiation-induced apoptosis. Moreover, silencing of circ-016901 elevated the expressions of LC3-II/I and Beclin-1 in irradiation-induced BMSCs. Similar results were obtained with miR-1249-5p overexpression and HIPK2 silencing. These results demonstrated that circ-016901 silencing attenuated injury in irradiation-induced mouse BMSCs by regulating the miR-1249-5p/HIPK2 axis, providing a novel target for future research on the mechanism of radiation resistance in BMSCs.
Collapse
Affiliation(s)
- Xianhui Wen
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Junhua Zhang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenjuan Yang
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dongyong Shan
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
8
|
Tang Z, Chai X, Wang Y, Cao S. Gene Regulatory Network Construction Based on a Particle Swarm Optimization of a Long Short-term Memory Network. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191023115224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The Gene Regulatory Network (GRN) is a model for studying the
function and behavior of genes by treating the genome as a whole, which can reveal the gene
expression mechanism. However, due to the dynamics, nonlinearity, and complexity of gene
expression data, it is a challenging task to construct a GRN precisely. And in the circulating
cooling water system, the Slime-Forming Bacteria (SFB) is one of the bacteria that helps to form
dirt. In order to explore the microbial fouling mechanism of SFB, constructing a GRN for the
fouling-forming genes of SFB is significant.
Objective:
Propose an effective GRN construction method and construct a GRN for the foulingforming
genes of SFB.
Methods:
In this paper, a combination method of Long Short-Term Memory Network (LSTM) and
Mean Impact Value (MIV) was applied for GRN reconstruction. Firstly, LSTM was employed to
establish a gene expression prediction model. To improve the performance of LSTM, a Particle
Swarm Optimization (PSO) was introduced to optimize the weight and learning rate. Then, the
MIV was used to infer the regulation among genes. In view of the fouling-forming problem of
SFB, we have designed electromagnetic field experiments and transcriptome sequencing
experiments to locate the fouling-forming genes and obtain gene expression data.
Results:
In order to test the proposed approach, the proposed method was applied to three datasets:
a simulated dataset and two real biology datasets. By comparing with other methods, the
experimental results indicate that the proposed method has higher modeling accuracy and it can be
used to effectively construct a GRN. And at last, a GRN for fouling-forming genes of SFB was
constructed using the proposed approach.
Conclusion:
The experiments indicated that the proposed approach can reconstruct a GRN
precisely, and compared with other approaches, the proposed approach performs better in
extracting the regulations among genes.
Collapse
Affiliation(s)
- Zhenhao Tang
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Xiangying Chai
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Yu Wang
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| |
Collapse
|
9
|
Mansour SMA, Ali SA, Nofal S, Soror SH. Targeting NUPR1 for Cancer Treatment: A Risky Endeavor. Curr Cancer Drug Targets 2020; 20:768-778. [PMID: 32619170 DOI: 10.2174/1568009620666200703152523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
NUPR1 is a transcription factor that has attracted great attention because of its various roles in cancer. Several studies were carried out to determine its molecular targets and mechanism of action to develop novel therapies against cancer. Here, we shed light on the role of NUPR1 in different types of cancer. NUPR1 regulates a complex network of pathways that may be affected by its silencing, which can cause varying effects. Its role in some types of cancer has been reported but remains incompletely understood, whereas its roles in other types of cancers have not been reported yet. Therefore, targeting NUPR1 for cancer treatment remains challenging and risky.
Collapse
Affiliation(s)
- Salma M A Mansour
- Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt
| | - Sahar A Ali
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| | - Shaira Nofal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| | - Sameh H Soror
- Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan Cairo 11795, Egypt
| |
Collapse
|
10
|
Kumar S, Sharawat SK, Ali A, Gaur V, Malik PS, Pandey M, Kumar S, Mohan A, Guleria R. Differential expression of circulating serum miR-1249-3p, miR-3195, and miR-3692-3p in non-small cell lung cancer. Hum Cell 2020; 33:839-849. [PMID: 32215864 DOI: 10.1007/s13577-020-00351-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022]
Abstract
Global deregulation in miRNA expression is a hallmark of cancer cell. An estimated 2300 mature miRNAs are encoded by human genome; role of many of which in carcinogenesis and as cancer biomarkers remains unexplored. In this study, we investigated the utility of miR-3692-3p, miR-3195, and miR-1249-3p as biomarkers in non-small cell lung cancer (NSCLC). For this prospective study, 115 subjects, including 75 NSCLC patients and 40 controls, were recruited. The expression of miR-3692-3p, miR-3195, and miR-1249-3p was checked using qRT-PCR. The miRNA expression was correlated with survival outcome and therapeutic response. There were no significant differences in the mean age of NSCLC patients and controls (56.2 and 55.3 years, respectively; p = 0.3242). Majority of NSCLC patients (67%) were smokers. We observed a significant upregulation of miR-3692-3p expression (p < 0.0001), while the expression of miR-3195 (p = 0.0017) and miR-1249-3p was significantly downregulated (p < 0.0001) in the serum of NSCLC patients as compared to controls. The expression of miR-1249-3p was significantly upregulated in lung adenocarcinoma versus lung squamous cell carcinoma (p = 0.0178). Interestingly, patients who responded to chemotherapy had higher expression of miR-1249-3p than non-responders (p = 0.0107). Moreover, patients with higher expression of miR-3195 had significantly longer overall survival (p = 0.0298). In multivariate analysis, miR-3195 emerged as independent prognostic factor for overall survival. We conclude that the miR-3195 may have prognostic significance, while miR-1249-3p may predict therapeutic response in NSCLC. Further studies are warranted to elucidate the role of these miRNAs in lung carcinogenesis and their utility as candidate cancer biomarkers.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashraf Ali
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vikas Gaur
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Monu Pandey
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anant Mohan
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Randeep Guleria
- Department of Pulmonary Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
11
|
Yu MC, Liu JX, Ma XL, Hu B, Fu PY, Sun HX, Tang WG, Yang ZF, Qiu SJ, Zhou J, Fan J, Xu Y. Differential network analysis depicts regulatory mechanisms for hepatocellular carcinoma from diverse backgrounds. Future Oncol 2019; 15:3917-3934. [PMID: 31729887 DOI: 10.2217/fon-2019-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the integrative combinational gene regulatory network landscape of hepatocellular carcinoma (HCC) molecular carcinogenesis from diverse background. Materials & methods: Modified gene regulatory network analysis was used to prioritize differentially regulated genes and links. Integrative comparisons using bioinformatics methods were applied to identify potential critical molecules and pathways in HCC with different backgrounds. Results: E2F1 with its surrounding regulatory links were identified to play different key roles in the HCC risk factor dysregulation mechanisms. Hsa-mir-19a was identified as showed different effects in the three HCC differential regulation networks, and showed vital regulatory role in HBV-related HCC. Conclusion: We describe in detail the regulatory networks involved in HCC with different backgrounds. E2F1 may serve as a universal target for HCC treatment.
Collapse
Affiliation(s)
- Min-Cheng Yu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Ji-Xiang Liu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai 201203, PR China
| | - Xiao-Lu Ma
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Pei-Yao Fu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Hai-Xiang Sun
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Wei-Guo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, PR China
| | - Zhang-Fu Yang
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Shuang-Jian Qiu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yang Xu
- Department of Liver Surgery & Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, PR China
| |
Collapse
|
12
|
Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111704. [PMID: 31683891 PMCID: PMC6896168 DOI: 10.3390/cancers11111704] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. It can be caused by chronic liver cell injury with resulting sustained inflammation, e.g., triggered by infections with hepatitis viruses B (HBV) and C (HCV). Death of hepatocytes leads to the activation of compensatory mechanisms, which can ultimately result in liver fibrosis and cirrhosis. Another common feature is the infiltration of the liver with inflammatory cells, which secrete cytokines and chemokines that act directly on the hepatocytes. Among several secreted proteins, members of the interleukin-6 (IL-6) family of cytokines have emerged as important regulatory proteins that might constitute an attractive target for therapeutic intervention. The IL-6-type cytokines activate multiple intracellular signaling pathways, and especially the Jak/STAT cascade has been shown to be crucial for HCC development. In this review, we give an overview about HCC pathogenesis with respect to IL-6-type cytokines and the Jak/STAT pathway. We highlight the role of mutations in genes encoding several proteins involved in the cytokine/Jak/STAT axis and summarize current knowledge about IL-6 family cytokines in this context. We further discuss possible anti-cytokine therapies for HCC patients in comparison to already established therapies.
Collapse
|
13
|
Systematic Investigation of Scutellariae Barbatae Herba for Treating Hepatocellular Carcinoma Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4365739. [PMID: 30584453 PMCID: PMC6280310 DOI: 10.1155/2018/4365739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
As the fifth most common type of malignant cancers globally, hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. As a long-time medicinal herb in Traditional Chinese Medicine (TCM), Scutellariae Barbatae Herba (SBH) has also been used for treating various cancers including HCC, but its underlying mechanisms have not been completely clarified. Presently, an innovative network-pharmacology platform was introduced to systematically elucidate the pharmacological mechanisms of SBH against HCC, adopting active ingredients prescreening, target fishing, and network analysis. The results revealed that SBH appeared to work on HCC probably through regulating 4 molecular functions, 20 biological processes, and hitting on 21 candidate targets involved in 40 pathways. By in-depth analysis of the first-ranked signaling pathway and hit genes, only TTR was highly and specially expressed in the liver tissue. TTR might play a crucial role in neutrophil degranulation pathway during SBH against HCC. Hence, TTR might become a therapeutic target of HCC. The study investigated the anti-hepatoma mechanisms of SBH from a holistic perspective, which provided a theoretical foundation for further experimental research and rational clinical application of SBH.
Collapse
|