1
|
Ansari A, Gheysarzadeh A, Sharifi A, Mofid MR. Clinicopathological correlation of insulin-like growth factor binding protein 3 and their death receptor in patients with gastric cancer. Res Pharm Sci 2024; 19:42-52. [PMID: 39006978 PMCID: PMC11244704 DOI: 10.4103/1735-5362.394819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/29/2023] [Accepted: 01/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The insulin-like growth factor binding protein 3 (IGFBP-3) and its novel death receptor (IGFBP-3R) have been exhibited to have tumor suppressor effects. Despite their prognostic value in some cancers, they have not been elucidated in gastric cancer. Experimental approach We collected 68 samples from patients with gastric cancer. IGFBP-3 and IGFBP-3R expression levels were evaluated with quantitative real-time polymerase chain reaction (RT-PCR) and western blotting in patients. The relationship between prognostic factors and IGFBP-3/IGFBP-3R expression was also evaluated. Findings/Results Our results showed that IGFBP-3 and IGFBP-3R expression was reduced significantly in tumor tissues. We found that there was an association between the reduction of IGFBP-3 with lymph node metastasis and tumor-node-metastasis (TNM) staging. Besides, IGFBP-3R expression was associated with tumor size, lymph node metastasis, differentiation, and TNM classification. Interestingly, we presented that the downregulation of IGFBP-3R was stage-dependent. In survival analysis, our findings showed that low levels of IGFBP-3R mRNA expression exhibited a close correlation with survival rate. Conclusion and implications The findings of this study showed that the expression levels of IGFBP-3 and IGFBP-3R are valuable prognostic factors. Despite the potential of IGFBP-3, IGFBP-3R plays a significant role as a prognostic factor in gastric cancer. However, these findings need to be developed and confirmed by further studies.
Collapse
Affiliation(s)
- Amir Ansari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Gheysarzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Sharifi
- Department of Internal Medicine, School of Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
2
|
Liu M, White BF, Praveen P, Li W, Lin F, Wu H, Li R, Delaine C, Forbes BE, Wade JD, Hossain MA. Engineering of a Biologically Active Insulin Dimer. J Med Chem 2021; 64:17448-17454. [PMID: 34797669 DOI: 10.1021/acs.jmedchem.1c01594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The growing epidemic of diabetes means that there is a need for therapies that are more efficacious, safe, and convenient. Here, we report the efficient synthesis of a novel disulfide dimer of human insulin tethered at the N-terminus of its B-chain through placement of a cysteine residue. The resulting peptide was shown to bind to both the insulin receptor isoform B and insulin-like growth factor-1 receptor with comparable affinity to native insulin. In in vivo insulin tolerance tests, the dimer was equipotent to Actrapid insulin and possessed a sustained duration of action greater than that of Actrapid and Glargine. While the secondary structure of our dimeric insulin was similar to that of insulin, it was more resistant to proteolysis. More importantly, our analogue was produced in quantitative yield from a monomeric thiol insulin scaffold. Our results suggest that this dimer has significant potential to address the clinical needs in the treatment of diabetes.
Collapse
Affiliation(s)
- Mengjie Liu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Barbara F White
- Department of Medicine (Austin Health), The University of Melbourne, Victoria 3010, Australia
| | - Praveen Praveen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Feng Lin
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Hongkang Wu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Rong Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Carlie Delaine
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,The Florey Department of Neuroscience and Mental Health, The University Melbourne, Victoria 3010, Australia.,School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,The Florey Department of Neuroscience and Mental Health, The University Melbourne, Victoria 3010, Australia.,School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
3
|
Liu H, Gu H, Kutbi EH, Tan SC, Low TY, Zhang C. Association of IGF-1 and IGFBP-3 levels with gastric cancer: A systematic review and meta-analysis. Int J Clin Pract 2021; 75:e14764. [PMID: 34469629 DOI: 10.1111/ijcp.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Many studies have investigated the association between serum IGF-1 and IGFBP levels with gastric cancer (GC), but the results remained inconclusive. In this work, we performed a systematic review and meta-analysis to examine the precise association of serum levels of IGF-1 and IGFBP with GC. METHODS A comprehensive systematic search was carried out in PubMed/MEDLINE, SCOPUS, Web of Science, and EMBASE databases for (nested) case-control studies that reported the levels of IGF-1 and IGFBP in GC cases and healthy controls, from inception until October 2020. Weighted mean difference (WMD) was calculated for estimating combined effect size. Subgroup analysis was performed to identify the source of heterogeneity among studies. RESULTS We found eight and five eligible studies (with 1541 participants) which provided data for IGF-1 and IGFBP, respectively. All studies on IGFBP reported the IGFBP-3 isoform. The pooled results indicate that GC patients had significantly lower serum IGF-1 [WMD = -26.21 ng/mL (95% CI, -45.58 to -6.85; P = .008)] and IGFBP-3 [WMD = -0.41 ng/mL (95% CI, -0.80 to -0.01; P = .04; I2 = 89.9%; P < .001)] levels than those in healthy subjects. Significant heterogeneity was observed in the association, which could be attributed to the sample size of the studies. CONCLUSIONS In conclusion, our study reveals a significantly lower level of IGF-1 and IGFBP-3 in GC patients compared with healthy control subjects.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Pathology, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar, China
| | - Huxia Gu
- Department of Network Information, Fuling Central Hospital of Chongqing city, Chongqing, China
| | - Emad H Kutbi
- Biorepository Department, Biomedical Research Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chong Zhang
- Department of Pathology, Fuling Central Hospital of Chongqing city, Chongqing, China
| |
Collapse
|
4
|
Liu Y, Lv H, Li X, Liu J, Chen S, Chen Y, Jin Y, An R, Yu S, Wang Z. Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-Snail signalling pathway. Int J Biol Sci 2021; 17:3522-3537. [PMID: 34512163 PMCID: PMC8416721 DOI: 10.7150/ijbs.62114] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Of all pathological types of renal cell cancer (RCC), clear cell renal cell carcinoma (ccRCC) has the highest incidence. Cyclovirobuxine (CVB), a triterpenoid alkaloid isolated from Buxus microphylla, exhibits antitumour activity against gastric cancer and breast cancer; however, the mechanism by which CVB inhibits ccRCC remains unclear. The aim of our study was to explore the antitumour effects of CVB on ccRCC and to elucidate its exact mechanism. Cell viability, proliferation, cell cycle distribution, apoptosis, wound healing and invasion were evaluated. Furthermore, Western blotting, immunofluorescence staining, immunohistochemical staining, and bioinformatics analyses were utilized to comprehensively probe the molecular mechanisms. The in vivo curative effect of CVB was explored using a 786-O xenograft model established in nude mice. CVB reduced cell viability, proliferation, angiogenesis, the epithelial-mesenchymal transition (EMT), migration and invasion. In addition, CVB induced cell cycle arrest in S phase and promoted apoptosis. The expression of the EMT-related transcription factor Snail was significantly downregulated by CVB via the inhibition of the AKT, STAT3 and MAPK pathways. We revealed that insulin-like growth factor binding protein 3 (IGFBP3) was the true therapeutic target of CVB. CVB exerted anti-ccRCC effects by blocking the IGFBP3-AKT/STAT3/MAPK-Snail pathway. Targeted inhibition of IGFBP3 with CVB treatment may become a promising therapeutic regimen for ccRCC.
Collapse
Affiliation(s)
- Yadong Liu
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Huiyan Lv
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Xingyi Li
- Department of Ultrasonic Imaging, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiannan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Song Chen
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Yaodong Chen
- Department of Ultrasonic Imaging, First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yinshan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Wang Y, Li J, Fu X, Li J, Liu L, Alkohlani A, Tan SC, Low TY, Hou Y. Association of circulating leptin and adiponectin levels with colorectal cancer risk: A systematic review and meta-analysis of case-control studies. Cancer Epidemiol 2021; 73:101958. [PMID: 34020315 DOI: 10.1016/j.canep.2021.101958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Leptin and adiponectin are adipokines which have been commonly implicated in carcinogenesis. As such, many studies have investigated the association of circulating leptin and adiponectin levels with colorectal cancer (CRC) risk. However, the results remained inconsistent. METHODS In this work, we performed a systematic review and meta-analysis to precisely examine the association between circulating levels of leptin and adiponectin and CRC risk. A systematic literature search was performed in PubMed/MEDLINE, Scopus, Web of Science, and EMBASE databases from inception until October 2020. The pooled effect size was then estimated by calculating the odds ratio (OR). RESULTS A total of 23 records (comprising 26 studies) were included in the meta-analysis. The overall analysis found that circulating levels of leptin and adiponectin were not significantly associated with CRC risk (P > 0.05). Interestingly, subgroup analysis revealed that a higher level of adiponectin was significantly associated with an increased CRC risk among overweight individuals (OR = 1.16; 95 % CI: 1.02, 1.32), and a decreased CRC risk among normal weight individuals (OR = 0.76; 95 % CI: 0.62, 0.92). Besides, a higher level of adiponectin was also significantly associated with a decreased risk of CRC in men (OR = 0.76; 95 % CI: 0.59, 0.98). CONCLUSIONS In conclusion, circulating leptin level was not associated with CRC risk, but that of adiponectin was associated with CRC risk only in specific subgroups.
Collapse
Affiliation(s)
- Yan Wang
- Department of Oncology and Hematology, The First People's Hospital of Longquanyi District, Chengdu, Chengdu, Sichuan, 510100, China
| | - Junyong Li
- Department of Oncology and Hematology, The First People's Hospital of Longquanyi District, Chengdu, Chengdu, Sichuan, 510100, China
| | - Xiaolin Fu
- Department of Oncology and Hematology, The First People's Hospital of Longquanyi District, Chengdu, Chengdu, Sichuan, 510100, China
| | - Jialing Li
- Department of Oncology and Hematology, The First People's Hospital of Longquanyi District, Chengdu, Chengdu, Sichuan, 510100, China
| | - Lihua Liu
- Department of Oncology and Hematology, The First People's Hospital of Longquanyi District, Chengdu, Chengdu, Sichuan, 510100, China
| | | | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yue Hou
- Department of Oncology and Hematology, The First People's Hospital of Longquanyi District, Chengdu, Chengdu, Sichuan, 510100, China.
| |
Collapse
|
6
|
Tan Y, Chen L, Li S, Hao H, Zhang D. MiR-384 Inhibits Malignant Biological Behavior Such as Proliferation and Invasion of Osteosarcoma by Regulating IGFBP3. Technol Cancer Res Treat 2020; 19:1533033820909125. [PMID: 32129151 PMCID: PMC7057399 DOI: 10.1177/1533033820909125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in the clinic. It is more common in children and adolescents. It has high malignancy, early metastasis rate, rapid disease progression, and high mortality. Although past years have witnessed the great improvement in the treatments of osteosarcoma, there remains a long way to go. MicroRNAs affect the malignant biological behaviors such as tumor proliferation and metastasis by regulating their target genes. In this study, we investigated the role and mechanism of miR-384 in osteosarcoma. Quantitative real-time polymerase chain reaction assay was performed to detect the expression of miR-384 and insulin-like growth factor binding protein 3 in osteosarcoma tissues and cell lines and established its correlation with osteosarcoma tumor progression and metastasis. To probe whether miR-384 played a tumor suppression role in osteosarcoma, we carried out gain-of-function and loss-of-function assays. Cell Counting Kit-8, cell colony formation, and transwell assays were carried out to determine the cells proliferation and invasion, respectively. Western blot was used to detect the changes of epithelial–mesenchymal transition marker proteins and insulin-like growth factor binding protein 3. MiR-384 was downregulated in osteosarcoma tissues and cell lines. MiR-384 was overexpressed in G292 cells transfected with miR-384 mimics and knocked down in Saos-2 cells with small hairpin RNA targeting miR-384. Ectopic expression of miR-384 inhibited osteosarcoma cell proliferation, colony formation, and invasion. E-cadherin was brought to a decrease whereas N-cadherin and Snail to an increase under the silent expression of miR-384, while overexpression of miR-384 led to an opposite result. MiR-384 could regulate insulin-like growth factor binding protein 3 expression in osteosarcoma. Quantitative polymerase chain reaction and Western blotting results validated that miR-384 knockdown downgrades both messenger RNA and protein levels of insulin-like growth factor binding protein 3 in G292 cells, while miR-384 upregulation exerted an opposite effect in Saos-2 cells. Insulin-like growth factor binding protein 3 was upregulated in osteosarcoma tissues and osteosarcoma cell lines compared with normal ones. Through the bioinformatics database found that the upstream transcriptional regulator of insulin-like growth factor binding protein 3 is MECP2. So miR-384 can directly inhibit MECP2 and then promote the expression of insulin-like growth factor binding protein 3. These results suggested that miR-384 might be a potential therapeutic targets and biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Yuelong Tan
- Orthopedics Department, Angang General Hospital, Jianshen Road, Tiedong District, Anshan, Liaoning, People's Republic of China
| | - Linlin Chen
- Orthopedics Department, Angang General Hospital, Jianshen Road, Tiedong District, Anshan, Liaoning, People's Republic of China
| | - Siwei Li
- Orthopedics Department, Angang General Hospital, Jianshen Road, Tiedong District, Anshan, Liaoning, People's Republic of China
| | - He Hao
- Orthopedics Department, Angang General Hospital, Jianshen Road, Tiedong District, Anshan, Liaoning, People's Republic of China
| | - Delong Zhang
- Orthopedics Department, Angang General Hospital, Jianshen Road, Tiedong District, Anshan, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ren Y, Yin S, Lin Y, Xu X. Insulin-like growth factor-binding proteins play a significant role in the molecular response to imatinib in chronic myeloid leukemia patients. Exp Ther Med 2020; 19:1771-1778. [PMID: 32104232 PMCID: PMC7027099 DOI: 10.3892/etm.2019.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
Imatinib (IM) is successfully used in the majority of patients with chronic myeloid leukemia (CML), but some patients develop resistance to drug treatment. Insufficient apoptosis results in uncontrolled cell proliferation, which is closely associated with the occurrence of drug resistance. Therefore, it is crucial to identify new biomarkers related to drug resistance. This aim of the present study was to investigate the profile of apoptosis-related proteins in K562 and K562/G (IM-resistant K562 cells) cells, in order to identify new biomarkers. A human apoptosis antibody array was used to screen 46 proteins in the two cells lines, among which 20 proteins were found to be differentially expressed between K562 and K562/G cells. The major proteins included secreted caspase-8, insulin-like growth factor-binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, caspase-3 and p27. IGFBP-1 IGFBP-2 and IGFBP-3 were selected for the follow-up study. Subsequently, reverse transcription-quantitative PCR analysis and western blotting were used to detect the expression levels of the IGFBPs. The results revealed that the expression levels of IGFBP-2 and IGFBP-3 in K562/G cells were significantly decreased compared with those in K562 cells, whereas the IGFBP-1 level was higher. Moreover, no significant correlation was observed between IGFBP-1 or IGFBP-2 and the level of the BCR-ABL fusion protein, whereas decreasing IGFBP-3 levels were associated with increasing BCR-ABL levels. These results suggested that IGFBP-1, IGFBP-2 and IGFBP-3 could be useful novel biomarkers for IM resistance in CML.
Collapse
Affiliation(s)
- Yingli Ren
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Shihong Yin
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ya Lin
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiucai Xu
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|