1
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
2
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
3
|
Bai X, Huang J, Jin Y, Chen J, Zhou S, Dong L, Han X, He X. M6A RNA methylation in biliary tract cancer: the function roles and potential therapeutic implications. Cell Death Discov 2024; 10:83. [PMID: 38365891 PMCID: PMC10873351 DOI: 10.1038/s41420-024-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Biliary tract cancers (BTCs) are relatively rare malignancies with a poor prognosis. For advanced BTCs, the efficacy of current chemotherapeutic approaches is limited. Consequently, there is an urgent need to deepen our understanding of the molecular mechanisms underlying BTC tumorigenesis and development for the exploration of effective targeted therapies. N6-methyladenosine (m6A), the most abundant RNA modifications in eukaryotes, is found usually dysregulated and involved in tumorigenesis, progression, and drug resistance in tumors. Numerous studies have confirmed that aberrant m6A regulators function as either oncogenes or tumor suppressors in BTCs by the reversible regulation of RNA metabolism, including splicing, export, degradation and translation. In this review, we summarized the current roles of the m6A regulators and their functional impacts on RNA fate in BTCs. The improved understanding of m6A modification in BTCs also provides a reasonable outlook for the exploration of new diagnostic strategies and efficient therapeutic targets.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhao Huang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yiqun Jin
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
| | - Jiemin Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shengnan Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Liangbo Dong
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xianlin Han
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Rong H, Wang D, Wang Y, Dong C, Wang G. YTHDF1 in Tumor Cell Metabolism: An Updated Review. Molecules 2023; 29:140. [PMID: 38202722 PMCID: PMC10779796 DOI: 10.3390/molecules29010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancement of research on m6A-related mechanisms in recent years, the YTHDF protein family within m6A readers has garnered significant attention. Among them, YTHDF1 serves as a pivotal member, playing a crucial role in protein translation, tumor proliferation, metabolic reprogramming of various tumor cells, and immune evasion. In addition, YTHDF1 also exerts regulatory effects on tumors through multiple signaling pathways, and numerous studies have confirmed its ability to assist in the reprogramming of the tumor cell-related metabolic processes. The focus of research on YTHDF1 has shifted in recent years from its m6A-recognition and -modification function to the molecular mechanisms by which it regulates tumor progression, particularly by exploring the regulatory factors that interact with YTHDF1 upstream and downstream. In this review, we elucidate the latest signaling pathway mechanisms of YTHDF1 in various tumor cells, with a special emphasis on its distinctive characteristics in tumor cell metabolic reprogramming. Furthermore, we summarize the latest pathological and physiological processes involving YTHDF1 in tumor cells, and analyze potential therapeutic approaches that utilize YTHDF1. We believe that YTHDF1 represents a highly promising target for future tumor treatments and a novel tumor biomarker.
Collapse
Affiliation(s)
| | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; (H.R.); (D.W.); (Y.W.); (C.D.)
| |
Collapse
|
5
|
Han M, Sun H, Zhou Q, Liu J, Hu J, Yuan W, Sun Z. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer 2023; 22:198. [PMID: 38053093 PMCID: PMC10698974 DOI: 10.1186/s12943-023-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Dai Z, Zhu W, Hou Y, Zhang X, Ren X, Lei K, Liao J, Liu H, Chen Z, Peng S, Li S, Lin S, Kuang M. METTL5-mediated 18S rRNA m 6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol Ther 2023; 31:3225-3242. [PMID: 37735874 PMCID: PMC10638452 DOI: 10.1016/j.ymthe.2023.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a deadly cancer with rapid tumor progression. While hyperactive mRNA translation caused by mis-regulated mRNA or tRNA modifications promotes ICC development, the role of rRNA modifications remains elusive. Here, we found that 18S rRNA m6A modification and its methyltransferase METTL5 were aberrantly upregulated in ICC and associated with poorer survival (log rank test, p < 0.05). We further revealed the critical role of METTL5-mediated 18S rRNA m6A modification in regulation of ICC cell growth and metastasis using loss- and gain-of function assays in vitro and in vivo. The oncogenic function of METTL5 is corroborated using liver-specific knockout and overexpression ICC mouse models. Mechanistically, METTL5 depletion impairs 18S rRNA m6A modification that hampers ribosome synthesis and inhibits translation of G-quadruplex-containing mRNAs that are enriched in the transforming growth factor (TGF)-β pathway. Our study uncovers the important role of METTL5-mediated 18S rRNA m6A modification in ICC and unravels the mechanism of rRNA m6A modification-mediated oncogenic mRNA translation control.
Collapse
Affiliation(s)
- Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wanjie Zhu
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Yingdong Hou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xinyue Zhang
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuxin Ren
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Kai Lei
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Haining Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhihang Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Liu N, Zhang J, Chen W, Ma W, Wu T. The RNA methyltransferase METTL16 enhances cholangiocarcinoma growth through PRDM15-mediated FGFR4 expression. J Exp Clin Cancer Res 2023; 42:263. [PMID: 37817227 PMCID: PMC10566113 DOI: 10.1186/s13046-023-02844-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND RNA N6-Methyladenosine (m6A) modification is implicated in the progression of human cancers including cholangiocarcinoma (CCA). METTL16 is recently identified as a new RNA methyltransferase responsible for m6A modification, although the role of METTL16 in CCA has not yet been examined. The current study aims to investigate the effect and mechanism of the RNA methyltransferase METTL16 in CCA. METHODS The expression of METTL16 in CCA was examined by analyzing publicly available datasets or by IHC staining on tumor samples. siRNA or CRISPR/Cas9-mediated loss of function studies were performed in vitro and in vivo to investigate the oncogenic role of METTL16 in CCA. MeRIP-Seq was carried out to identify the downstream target of METTL16. ChIP-qPCR, immunoprecipitation, and immunoblots were used to explore the regulation mechanisms for METTL16 expression in CCA. RESULTS We observed that the expression of METTL16 was noticeably increased in human CCA tissues. Depletion of METTL16 significantly inhibited CCA cell proliferation and decreased tumor progression. PRDM15 was identified as a key target of METTL16 in CCA cells. Mechanistically, our data showed that METTL16 regulated PRDM15 protein expression via YTHDF1-dependent translation. Accordingly, we observed that restoration of PRDM15 expression could rescue the deficiency of CCA cell proliferation/colony formation induced by METTL16 depletion. Our subsequent analyses revealed that METTL16-PRDM15 signaling regulated the expression of FGFR4 in CCA cells. Specifically, we observed that PRDM15 protein was associated with the FGFR4 promoter to regulate its expression. Furthermore, we showed that the histone acetyltransferase p300 cooperated with the transcription factor YY1 to regulate METTL16 gene expression via histone H3 lysine 27 (H3K27) acetylation in CCA cells. CONCLUSIONS This study describes a novel METTL16-PRDM15-FGFR4 signaling axis which is crucial for CCA growth and may have important therapeutic implications. We showed that depletion of METTL16 significantly inhibited CCA cell proliferation and decreased tumor progression.
Collapse
Affiliation(s)
- Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Wang S, Gao S, Ye W, Li Y, Luan J, Lv X. The emerging importance role of m6A modification in liver disease. Biomed Pharmacother 2023; 162:114669. [PMID: 37037093 DOI: 10.1016/j.biopha.2023.114669] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
N6-methyladenosine (m6A) modification, as one of the most common types of inner RNA modification in eukaryotes, plays a multifunctional role in normal and abnormal biological processes. This type of modification is modulated by m6A writer, eraser and reader, which in turn impact various processes of RNA metabolism, such as RNA processing, translation, nuclear export, localization and decay. The current academic view holds that m6A modification exerts a crucial role in the post-transcriptional modulation of gene expression, and is involved in multiple cellular functions, developmental and disease processes. However, the potential molecular mechanism and specific role of m6A modification in the development of liver disease have not been fully elucidated. In our review, we summarized the latest research progress on m6A modification in liver disease, and explored how these novel findings reshape our knowledge of m6A modulation of RNA metabolism. In addition, we also illustrated the effect of m6A on liver development and regeneration to prompt further exploration of the mechanism and role of m6A modification in liver physiology and pathology, providing new insights and references for the search of potential therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
9
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
10
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|
11
|
Zhu Y, Li J, Yang H, Yang X, Zhang Y, Yu X, Li Y, Chen G, Yang Z. The potential role of m6A reader YTHDF1 as diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis in pan-cancer. Cell Death Dis 2023; 9:34. [PMID: 36707507 PMCID: PMC9883452 DOI: 10.1038/s41420-023-01321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
m6A is an important RNA methylation in progression of various human cancers. As the m6A reader protein, YTHDF1 is reported to accelerate m6A-modified mRNAs translation in cytoplasm. It is highly expressed in various human cancers and contributes to the progression and metastasis of cancers. YTHDF1 was closely associated with poor prognosis and also used as a molecular marker for clinical diagnosis or therapy in human cancers. It has been reported to promote chemoresistance to Adriamycin, Cisplatin and Olaparib by increasing mRNA stability of its target molecule. Moreover, it contributes to CSC-like characteristic of tumor cells and inducing the antitumor immune microenvironment. Here, we reviewed the clinical diagnostic and prognostic values of YTHDF1, as well as the molecular mechanisms of YTHDF1 in progression and metastasis of human cancers.
Collapse
Affiliation(s)
- Yanan Zhu
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Jing Li
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Hang Yang
- grid.415444.40000 0004 1800 0367Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, 650106 Kunming, Yunnan China
| | - Xinyi Yang
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, 550004 Guiyang, Guizhou China
| | - Ya Zhang
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Xinchao Yu
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Ying Li
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Gangxian Chen
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Zuozhang Yang
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| |
Collapse
|
12
|
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z, Han X. Biological and pharmacological roles of m 6A modifications in cancer drug resistance. Mol Cancer 2022; 21:220. [PMID: 36517820 PMCID: PMC9749187 DOI: 10.1186/s12943-022-01680-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer drug resistance represents the main obstacle in cancer treatment. Drug-resistant cancers exhibit complex molecular mechanisms to hit back therapy under pharmacological pressure. As a reversible epigenetic modification, N6-methyladenosine (m6A) RNA modification was regarded to be the most common epigenetic RNA modification. RNA methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) are frequently disordered in several tumors, thus regulating the expression of oncoproteins, enhancing tumorigenesis, cancer proliferation, development, and metastasis. The review elucidated the underlying role of m6A in therapy resistance. Alteration of the m6A modification affected drug efficacy by restructuring multidrug efflux transporters, drug-metabolizing enzymes, and anticancer drug targets. Furthermore, the variation resulted in resistance by regulating DNA damage repair, downstream adaptive response (apoptosis, autophagy, and oncogenic bypass signaling), cell stemness, tumor immune microenvironment, and exosomal non-coding RNA. It is highlighted that several small molecules targeting m6A regulators have shown significant potential for overcoming drug resistance in different cancer categories. Further inhibitors and activators of RNA m6A-modified proteins are expected to provide novel anticancer drugs, delivering the therapeutic potential for addressing the challenge of resistance in clinical resistance.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Haijiao Zou
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Qin Dang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuyuan Zhang
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jinxiang Lv
- grid.412633.10000 0004 1799 0733Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Huanyun Li
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhaokai Zhou
- grid.412633.10000 0004 1799 0733Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xinwei Han
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| |
Collapse
|
13
|
Ma W, Wu T. RNA m6A modification in liver biology and its implication in hepatic diseases and carcinogenesis. Am J Physiol Cell Physiol 2022; 323:C1190-C1205. [PMID: 36036444 PMCID: PMC9576175 DOI: 10.1152/ajpcell.00214.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification in eukaryotic RNAs. This modification is regulated by three different factors (writers, erasers, and readers) and affects multiple aspects of RNA metabolism, including RNA splicing, nuclear export, translation, stability and decay. The m6A-mediated modification plays important roles in posttranscriptional regulation of gene expression and mediates a variety of cellular and biological processes. Accordingly, deregulation in m6A modification is closely related to the occurrence and development of human diseases. The liver is the largest digestive and metabolic organ in human and recent studies have shown that m6A modification is importantly implicated in liver cellular and physiological functions and in the pathogenesis of hepatic diseases and cancers. In the current review, we summarize the functions of m6A in RNA metabolism and its roles in liver cell biology and discuss its implication in hepatic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
14
|
Multiple Roles of m6A RNA Modification in Translational Regulation in Cancer. Int J Mol Sci 2022; 23:ijms23168971. [PMID: 36012237 PMCID: PMC9408962 DOI: 10.3390/ijms23168971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Despite its discovery in the early 1970s, m6A modification within mRNA molecules has only powerfully entered the oncology field in recent years. This chemical modification can control all aspects of the maturation of mRNAs, both in the nucleus and in the cytoplasm. Thus, the alteration in expression levels of writers, erasers, and readers may significantly contribute to the alteration of gene expression observed in cancer. In particular, the activation of oncogenic pathways can lead to an alteration of the global rate of mRNA translation or the selective translation of specific mRNAs. In both cases, m6A can play an important role. In this review, we highlight the role of m6A in the regulation of translation by focusing on regulatory mechanisms and cancer-related functions of this novel but still controversial field.
Collapse
|