1
|
Manoharan J, Albers M, Khizanishvili N, Krasser-Gercke N, Schmitt M, Mintziras I, Wächter S, Rinke A, Gao Y, Bartsch JW, Jesinghaus M, Di Fazio P, Bartsch DK. Prognostic value of clinical parameters and exosomal lncRNA NEAT1_1 in MEN1-related non-functioning pancreatic neuroendocrine tumors. J Neuroendocrinol 2025:e70024. [PMID: 40170567 DOI: 10.1111/jne.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Non-functioning pancreatic neuroendocrine tumors (NF-pNETs) significantly contribute to the premature death of multiple endocrine neoplasia type 1 (MEN1) patients. Reliable prognostic markers are not yet available. MicroRNAs (miRNA) and long-non-coding (lnc) RNAs, transported by extracellular vesicles, are emerging as new prognostic tools. This study aimed to analyze the clinical characteristics, the exosomal-miRNA 451 (exo-miR451) and the lnc-RNA nuclear paraspeckle assembly transcript 1 (NEAT1_1, 3.7 kB) in the mild and aggressive courses of MEN1-NFpNET disease. Patient characteristics were assessed regarding an aggressive course of disease. In addition, exo-miR451 and exo-lnc-NEAT1_1 expression levels were quantified in serum by RT-qPCR and correlated with clinical data. Immunohistochemistry results of STAT3 (signal transducer and activator of transcription 3), regulated by NEAT1, were performed in NF-pNET tissue and correlated with exo-lnc-NEAT1_1 expression. Among 66 MEN1 patients with NF-pNETs, 13 (20%) had an aggressive disease course. No significant differences in patient characteristics were observed between those with aggressive (n = 13) and mild (n = 53) disease (all p > .5). Exosomal miRNA-451 was dysregulated in 55% (n = 23) of cases, showing a trend toward higher upregulation in the aggressive group (36% vs. 19%), although this difference was not statistically significant (p = .215). Exo-NEAT1_1 was overexpressed in 42% (16/38) of patients, without significant differences between groups (p = .0523). However, exo-NEAT1_1 expression strongly correlated with STAT3 immunohistochemical staining (p = .001). Although no prognostic marker could be identified, we show for the first time that the STAT3-NEAT1 pathway plays a role in MEN1-associated NF-pNET tumorigenesis.
Collapse
Affiliation(s)
- Jerena Manoharan
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Max Albers
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Norman Krasser-Gercke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Maxime Schmitt
- Department of Pathology, Philipps University Marburg, Marburg, Germany
| | - Ioannis Mintziras
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Sabine Wächter
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Anja Rinke
- Department of Internal Medicine, Division of Gastroenterology and Endocrinology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Yutong Gao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Moritz Jesinghaus
- Department of Pathology, Philipps University Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
- Center for Tumor and Immune Biology, Molecular Imaging, Philipps University Marburg, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Zeng X, Liu T, Tang S, Dong X, Li Y, Liao L, Chen S, Chen L, Kong J, Dai Z, Feng K, Wong YH, Xie Q. Exosomal miR-7-25207 Increases Subgroup J Avian Leukosis Virus Titers by Targeting the Akt-CyclinQ1 and PRC1-YAF2 Dual Pathways. Microorganisms 2024; 12:1495. [PMID: 39065263 PMCID: PMC11279298 DOI: 10.3390/microorganisms12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) is a major pathogen in poultry, causing substantial economic losses to the poultry industry worldwide. Exosomal small RNAs derived from virus-infected cells or biological fluids can serve as viral transmission vectors. However, the role and mechanism of exosomal miRNA in ALV-J infection are unclear. In this study, we demonstrated that exosomal microRNA-7-25207 (miR-7-25207) could increase the titers of ALV-J. Exosomes isolated from ALV-J-infected DF-1 cells (Exo-ALV-J) contained partial viral proteins from ALV-J and could transmit the infection to uninfected DF-1 cells, leading to productive infection. Additionally, the RNA expression profile of exosomes was altered following ALV-J infection. miRNA analysis revealed that the expression of exosomal miR-7-25207 increased. Overexpression of miR-7-25207 significantly increased the titers of ALV-J in transfected cells. Furthermore, miR-7-25207 directly suppressed the expression of Akt and PRC1. Akt, in turn, directly inhibited CyclinQ1 expression, while PRC1 directly interfered with YAF2 expression. In conclusion, ALV-J infection activates the expression of miR-7-25207, which is subsequently delivered via exosomes to uninfected cells, increasing ALV-J titers by targeting Akt-CyclinQ1 and PRC1-YAF2 dual pathways. These findings suggest that exosomal miR-7-25207 may serve as a potential biomarker for clinical parameters in ALV-J infection.
Collapse
Affiliation(s)
- Xiaona Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (S.T.); (X.D.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Shengqiu Tang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (S.T.); (X.D.)
| | - Xiaoying Dong
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (S.T.); (X.D.)
| | - Yajuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Liqin Liao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jie Kong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yung-Hou Wong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China;
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| |
Collapse
|
3
|
Kang HS, Park HY, Lim H, Son IT, Kim MJ, Kim NY, Kim MJ, Nam ES, Cho SJ, Kwon MJ. Different miRNAs Related to FBXW7 Mutations or High Mitotic Indices Contribute to Rectal Neuroendocrine Tumors: A Pilot Study. Int J Mol Sci 2023; 24:ijms24076329. [PMID: 37047300 PMCID: PMC10093831 DOI: 10.3390/ijms24076329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Recent studies suggest that miRNA may be involved in the development of rectal neuroendocrine tumors (NETs). We explored the frequency of clinicopathologically relevant mutations and miRNA expression in rectal NETs to examine molecular profiles related to prognosis and behavior. Twenty-four eligible specimens with endoscopically excised rectal NETs were selected. Next-generation sequencing and an miRNA expression assay were used to evaluate the expression profile relevant to common genetic mutations in rectal NETs. Kyoto Encyclopedia of Genes and Genomes analysis predicted that the possible target signaling pathways were correlated with dysregulated miRNAs. Nineteen rectal NETs harbored more than one mutation in the 24 cancer-related genes. Seven miRNAs (hsa-miR-769-5p, hsa-miR-221-3p, hsa-miR-34a-5p, hsa-miR-181c-5p, hsa-miR-1246, hsa-miR-324-5p, and hsa-miR-361-3p) were significantly down-regulated in tumors harboring the FBWX7 mutation. Unsupervised hierarchical clustering analysis showed that up-regulation of these seven miRNAs may result in high mitotic indices, indicating the role of miRNAs in tumor progression. Among the down-regulated miRNAs, hsa-miR-769-5p was strongly correlated with extracellular matrix–receptor interaction and lysine degradation. Among the clinicopathological factors, up-regulated hsa-miR-3934-5p was linked to an increased mitotic count. No change in miRNA expression was associated with a tumor size >1 cm, lymphovascular invasion, or Ki-67 index. In summary, we identified different miRNA signatures involved in FBXW7 mutations or high mitotic indices in rectal NETs, which may play a critical role in tumor behavior.
Collapse
Affiliation(s)
- Ho Suk Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea
| | - Min Jeong Kim
- Department of Surgery, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Eun Sook Nam
- Department of Pathology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Seong Jin Cho
- Department of Pathology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Wang F, Liang J, Yang F, Liu F, Han S, Xing N. Preoperative red cell distribution width is associated with postoperative lymphovascular invasion in prostate cancer patients treated with radical prostatectomy: A retrospective study. Front Endocrinol (Lausanne) 2022; 13:1020655. [PMID: 36313761 PMCID: PMC9612513 DOI: 10.3389/fendo.2022.1020655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate the relationship between baseline clinicopathological and laboratory variables especially hematological parameters and lymphovascular invasion (LVI) in patients who underwent radical prostatectomy (RP). METHODS We retrospectively evaluated 348 prostate cancer (PCa) patients who underwent RP in our center between May 2018 and June 2021. We divided them into non-LVI and LVI groups based on LVI status, and compared clinicopathological characteristics between non-LVI and LVI groups. Clinicopathological parameters including age, body mass index (BMI), history of hypertension and diabetes mellitus, neoadjuvant hormonal therapy (NHT), pathological stage T (pT) and lymph node status (pN), ISUP (international society of urological pathology) grade, positive surgical margin (PSM) rate, and hematological parameters containing prostate-specific antigen (PSA), whole blood parameters and inflammatory indexes were collected. The association between the clinicopathological parameters and the presence of LVI was identified by multivariate logistic regression analysis. RESULTS The pathological results of the RP specimen consisted of 53 (15.2%) patients with LVI and 295 (84.8%) cases without LVI. The level of PSA, percentages of advanced pT and grade, pN1, and PSM were significantly higher in the LVI group when compared with the non-LVI counterpart (p<0.001, p<0.001, p<0.001, p<0.001, p=0.007, respectively). Among the whole blood parameters, only red cell distribution width (RDW) was significantly different (41.2 ± 2.5 vs. 42.1 ± 3.1, p=0.035). Multivariate regression analysis demonstrated that RDW and NHT were negatively correlated with the presence of LVI (OR = 0.870, p=0.024; OR = 0.410, p=0.025), while PSA, ISUP, and pT were positively correlated with the presence of LVI (OR=1.013, p=0.005; OR =1.589, p=0.001; OR=1.655, p=0.008) after adjusting for confounding factors. CONCLUSIONS RDW rather than other whole blood parameters was independently and negatively associated with the presence of LVI in PCa patients, suggesting that RDW might play an essential role in PCa invasion.
Collapse
Affiliation(s)
- Fangming Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Nianzeng Xing,
| |
Collapse
|