1
|
Moodie JE, Buchanan C, Furtjes A, Conole E, Stolicyn A, Corley J, Ferguson K, Hernandez MV, Maniega SM, Russ TC, Luciano M, Whalley H, Bastin ME, Wardlaw J, Deary I, Cox S. Brain maps of general cognitive function and spatial correlations with neurobiological cortical profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628670. [PMID: 39764021 PMCID: PMC11702631 DOI: 10.1101/2024.12.17.628670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning (g)? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise g-cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic N = 38,379 (age range = 44 to 84 years old). These g-morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.17 across morphometry measures) and show good cross-cohort agreement (mean spatial correlation r = 0.57, SD = 0.18). Then, to address (2), we bring together existing - and derive new - cortical maps of 33 neurobiological characteristics from multiple modalities (including neurotransmitter receptor densities, gene expression, functional connectivity, metabolism, and cytoarchitectural similarity). We discover that these 33 profiles spatially covary along four major dimensions of cortical organisation (accounting for 65.9% of the variance) and denote aspects of neurobiological scaffolding that underpin the spatial patterning of MRI-cognitive associations we observe (significant |r| range = 0.21 to 0.56). Alongside the cortical maps from these analyses, which we make openly accessible, we provide a compendium of cortex-wide and within-region spatial correlations among general and specific facets of brain cortical organisation and higher order cognitive functioning, which we hope will serve as a framework for analysing other aspects of behaviour-brain MRI associations.
Collapse
Affiliation(s)
- Joanna E. Moodie
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Colin Buchanan
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Anna Furtjes
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Eleanor Conole
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Aleks Stolicyn
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Karen Ferguson
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Maria Valdes Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Row Fogo Centre for Research into Small Vessel Diseases
| | - Susana Munoz Maniega
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Tom C. Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, UK
- Dementia Network, NHS Research Scotland
| | | | - Heather Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Mark E. Bastin
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- UK Dementia Research Institute
- Row Fogo Centre for Research into Small Vessel Diseases
| | - Ian Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Simon Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| |
Collapse
|
2
|
Zhang X, Wang H, Lu H, Fan M, Tian W, Wang Y, Cui M, Jiang Y, Suo C, Zhang T, Jin L, Xu K, Chen X. Quantitative gait markers and the TUG time in chronic kidney disease. Heliyon 2024; 10:e35292. [PMID: 39170243 PMCID: PMC11336600 DOI: 10.1016/j.heliyon.2024.e35292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Background Poor gait performance results in more fall incidents among people with chronic kidney disease (CKD). It is unknown what specific quantitative gait markers contribute to high fall risk in CKD and the size of their mediation effects. Methods We included 634 participants from the Taizhou Imaging Study who had complete gait and laboratory data. Quantitative gait assessment was conducted with a wearable insole-like device. Factor analysis was utilized to summarize fifteen highly correlated individual parameters into five independent gait domains. Prevalent CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 ml/min per 1.73 m2, which was calculated based on cystatin C. Regression models were created to examine the associations of prevalent CKD with quantitative gait markers and the TUG time. Mediation analysis was used to investigate whether poor quantitative gait parameters could be mediators and the proportion of their mediation effects. Results Participants with prevalent CKD had a higher TUG time (odds ratio = 2.02, P = 0.025) and poor gait performance in the phase domain (standardized β = -0.391, FDR = 0.009), including less time in the swing phase (standardized β = -0.365, FDR = 0.027) and greater time in the double-support phase (standardized β = 0.367, FDR = 0.027). These abnormalities mediated the association of prevalent CKD with a high TUG time (for the swing phase: 31.6 %, P mediation = 0.044; for the double-support phase: 29.6 %, P mediation = 0.042; for the phase domain: 26.9 %, P mediation = 0.048). Conclusion Poor phase-related gait abnormalities mediated the relationship between CKD and a high TUG time, suggesting that incorporating quantitative gait markers in specific domains may improve fall prevention programs for individuals with CKD.
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Hao Wang
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Heyang Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Suo
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Kelin Xu
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
3
|
Hooten M, Ortega M, Oyeyemi A, Yu F, Ofori E. Investigating the relationships between motor skills, cognitive status, and area deprivation index in Arizona: a pilot study. Front Public Health 2024; 12:1385435. [PMID: 38983257 PMCID: PMC11231207 DOI: 10.3389/fpubh.2024.1385435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Previous studies highlight the negative impact of adverse socioeconomic conditions throughout life on motor skills and cognitive health. Factors such as cognitive activity, physical activity, lifestyle, and socioeconomic position significantly affect general health status and brain health. This pilot study investigates the relationships among the Area Deprivation Index (ADI)-a measure of neighborhood-level socioeconomic deprivation, brain structure (cortical volume and thickness), and cognitive status in adults in Arizona. Identifying measures sensitive to ADI could elucidate mechanisms driving cognitive decline. Methods The study included 22 adults(mean age = 56.2 ± 15.2) in Arizona, residing in the area for over 10 years(mean = 42.7 ± 15.8). We assessed specific cognitive domains using the NeuroTrax™ cognitive screening test, which evaluates memory, executive function, visual-spatial processing, attention, information processing speed, and motor function. We also measured cortical thickness and volume in 10 cortical regions using FreeSurfer 7.2. Linear regression tests were conducted to examine the relationships between ADI metrics, cognitive status, and brain health measures. Results Results indicated a significant inverse relationship between ADI metrics and memory scores, explaining 25% of the variance. Both national and state ADI metrics negatively correlated with motor skills and global cognition (r's < -0.40, p's < 0.05). In contrast, ADI metrics generally positively correlated with motor-related volumetric and cortical thickness measures (r's > 0.40, p's < 0.05). Conclusion The findings suggest that neighborhood-level social deprivation might influence memory and motor status, primarily through its impact on motor brain health.
Collapse
Affiliation(s)
- Madeline Hooten
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Marcus Ortega
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Adewale Oyeyemi
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Fang Yu
- Edson College of Nursing and Healthcare Innovation, Arizona State University, Phoenix, AZ, United States
| | - Edward Ofori
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
4
|
Luo Z, Xiong L, Xu X, Sun M, Mu Y, Chen H, Liu Z, Luo Z, Wang J, Liu Y. The relationship between coffee-related factors and cortical and hippocampal structure: a triangulation of evidence approach and Mendelian randomization research. Front Nutr 2024; 11:1351067. [PMID: 38835962 PMCID: PMC11148385 DOI: 10.3389/fnut.2024.1351067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Existing studies have reported sustained changes in the cortical structure of rats due to coffee-related factors, which are speculated to occur in the human body. However, there is a lack of research on this topic. Additionally, previous observational studies have found the impact of diseases on cortical structure and the potential therapeutic effects of coffee on these diseases. Our aim was to study the causal effects of coffee-related factors on the human brain using SNPs (single nucleotide polymorphisms). We will connect these discovered causal effects to the impact of diseases on the brain. Through triangulating evidence, we will reveal the potential active areas of coffee in preventing diseases. Methods We utilized GWAS data from multiple cohorts and their databases, selecting instrumental variables for genetic prediction of coffee intake and plasma levels of caffeine and its direct metabolites. We applied these instrumental variables to individual data on cortical thickness and surface area, as well as hippocampal volume, from the ENIGMA and CHARGE consortium for Mendelian randomization analysis (MR). Triangular evidence was obtained by integrating existing evidence through a specified retrieval strategy, calculating the overlap between coffee's effects on brain regions and disease-related brain regions to identify potential regions of action. Results The MR analysis yielded 93 positive results for 9 exposures, among which theobromine, a metabolite in the caffeine pathway, was found to be associated with increased hippocampal volume. For cortical structure, theobromine in the caffeine pathway was associated with a decrease in total surface area, while theobromine and caffeine in the pathway were associated with an increase in total thickness. The overlap rate of triangular evidence showed no difference in both overall and subgroup analyses, indicating a high overlap between the effects of coffee on brain regions and disease. Conclusions From predicted outcomes from causal effects, coffee intake-related factors may have lasting effects on cortical structure. Additionally, theobromine and theophylline have the greatest impact on certain brain gyri, rather than caffeine. Triangulation evidence indicates that disease and coffee intake-related factors act on the same cortical regions, suggesting the presence of potential shared or antagonistic pathways.
Collapse
Affiliation(s)
- Zining Luo
- Department of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Lijun Xiong
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xinyu Xu
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Meng Sun
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Yingfei Mu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Hongjie Chen
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Zhenglong Liu
- Department of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhiyong Luo
- College of Earth Sciences, Chengdu University of Technology, Chengdu, China
| | - Jianli Wang
- Department of Encephalopathy, Pidu District Traditional Chinese Medicine Hospital, Chengdu, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Zhang X, Lu H, Fan M, Tian W, Wang Y, Cui M, Jiang Y, Suo C, Zhang T, Jin L, Xu K, Chen X. Bidirectional mediation of bone mineral density and brain atrophy on their associations with gait variability. Sci Rep 2024; 14:8483. [PMID: 38605086 PMCID: PMC11009386 DOI: 10.1038/s41598-024-59220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
This mediation analysis aimed to investigate the associations among areal bone mineral density, mobility-related brain atrophy, and specific gait patterns. A total of 595 participants from the Taizhou Imaging Study, who underwent both gait and bone mineral density measurements, were included in this cross-sectional analysis. We used a wearable gait tracking device to collect quantitative gait parameters and then summarized them into independent gait domains with factor analysis. Bone mineral density was measured in the lumbar spine, femoral neck, and total hip using dual-energy X-ray absorptiometry. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the volumes of brain regions related to mobility were computed using FreeSurfer. Lower bone mineral density was found to be associated with higher gait variability, especially at the site of the lumbar spine (β = 0.174, FDR = 0.001). Besides, higher gait variability was correlated with mobility-related brain atrophy, like the primary motor cortex (β = 0.147, FDR = 0.006), sensorimotor cortex (β = 0.153, FDR = 0.006), and entorhinal cortex (β = 0.106, FDR = 0.043). Bidirectional mediation analysis revealed that regional brain atrophy contributed to higher gait variability through the low lumbar spine bone mineral density (for the primary motor cortex, P = 0.018; for the sensorimotor cortex, P = 0.010) and the low lumbar spine bone mineral density contributed to higher gait variability through the primary motor and sensorimotor cortices (P = 0.026 and 0.010, respectively).
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Heyang Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Suo
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Kelin Xu
- School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
6
|
Zhang X, Lu H, Fan M, Tian W, Cui M, Jiang Y, Suo C, Zhang T, Xu K, Wang Y, Chen X. Mobility-related brain regions linking carotid intima-media thickness to specific gait performances in old age. BMC Geriatr 2024; 24:303. [PMID: 38561655 PMCID: PMC10983675 DOI: 10.1186/s12877-024-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Gait disturbance is common in older adults with vascular diseases. However, how carotid atherosclerosis affects gait remains poorly understood. The objectives were to investigate the associations between carotid intima-media thickness and specific gait performances and explore the potential role of brain structure in mediating these associations. METHODS A cross-sectional analysis of data from the Taizhou Imaging Study was conducted, including 707 individuals who underwent both gait and carotid ultrasound examinations. Gait assessments include the Timed-Up-and-Go test, the Tinetti test, and quantitative gait assessment using a wearable device. Quantitative parameters were summarized into independent gait domains with factor analysis. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the volumes of fifteen brain regions related to motor function (primary motor, sensorimotor), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules), executive control function (dorsolateral prefrontal cortex, anterior cingulate), memory (hippocampus, entorhinal cortex), motor imagery (precuneus, parahippocampus, posterior cingulated cortex), and balance (basal ganglia: pallidum, putamen, caudate, thalamus) were computed using FreeSurfer and the Desikan-Killiany atlas. Mediation analysis was conducted with carotid intima-media thickness as the predictor and mobility-related brain regions as mediators. RESULTS Carotid intima-media thickness was found to be associated with the Timed-Up-and-Go performance (β = 0.129, p = 0.010) as well as gait performances related to pace (β=-0.213, p < 0.001) and symmetry (β = 0.096, p = 0.045). Besides, gait performances were correlated with mobility-related brain regions responsible for motor, visuospatial attention, executive control, memory, and balance (all FDR < 0.05). Notably, significant regions differed depending on the gait outcomes measured. The primary motor (41.9%), sensorimotor (29.3%), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules) (13.8%), entorhinal cortex (36.4%), and motor imagery (precuneus, parahippocampus, posterior cingulated cortex) (27.3%) mediated the association between increased carotid intima-media thickness and poorer Timed-Up-and-Go performance. For the pace domain, the primary motor (37.5%), sensorimotor (25.8%), visuospatial attention (12.3%), entorhinal cortex (20.7%), motor imagery (24.9%), and balance (basal ganglia: pallidum, putamen, caudate, thalamus) (11.6%) acted as mediators. CONCLUSIONS Carotid intima-media thickness is associated with gait performances, and mobility-related brain volume mediates these associations. Moreover, the distribution of brain regions regulating mobility varies in the different gait domains. Our study adds value in exploring the underlying mechanisms of gait disturbance in the aging population.
Collapse
Grants
- 2022ZD0211600 the Science and Technology Innovation 2030 Major Projects
- 2022ZD0211600 the Science and Technology Innovation 2030 Major Projects
- 2022ZD0211600 the Science and Technology Innovation 2030 Major Projects
- 2022ZD0211600 the Science and Technology Innovation 2030 Major Projects
- 2022ZD0211600 the Science and Technology Innovation 2030 Major Projects
- 2021YFC2500100 National Key Research and Development Program of China
- 2021YFC2500100 National Key Research and Development Program of China
- 2021YFC2500100 National Key Research and Development Program of China
- 2021YFC2500100 National Key Research and Development Program of China
- 2021YFC2500100 National Key Research and Development Program of China
- 2021YFC2500100 National Key Research and Development Program of China
- 2021YFC2500100 National Key Research and Development Program of China
- 23ZR1414000, 22ZR1405300 the Natural Science Foundation of Shanghai, China
- 23ZR1414000, 22ZR1405300 the Natural Science Foundation of Shanghai, China
- 23ZR1414000, 22ZR1405300 the Natural Science Foundation of Shanghai, China
- 23ZR1414000, 22ZR1405300 the Natural Science Foundation of Shanghai, China
- 23ZR1414000, 22ZR1405300 the Natural Science Foundation of Shanghai, China
- 23ZR1414000, 22ZR1405300 the Natural Science Foundation of Shanghai, China
- 22QA1404000 the Shanghai Rising-Star Program
- 22QA1404000 the Shanghai Rising-Star Program
- 22QA1404000 the Shanghai Rising-Star Program
- 22QA1404000 the Shanghai Rising-Star Program
- 22QA1404000 the Shanghai Rising-Star Program
- GWGZLXK-2023-02 Fudan School of Public Health-Jiading CDC key disciplines for the high-quality development of public health
- GWGZLXK-2023-02 Fudan School of Public Health-Jiading CDC key disciplines for the high-quality development of public health
- GWGZLXK-2023-02 Fudan School of Public Health-Jiading CDC key disciplines for the high-quality development of public health
- GWGZLXK-2023-02 Fudan School of Public Health-Jiading CDC key disciplines for the high-quality development of public health
- GWGZLXK-2023-02 Fudan School of Public Health-Jiading CDC key disciplines for the high-quality development of public health
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Heyang Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Suo
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- School of Public Health, the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Yingzhe Wang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
7
|
Mo Y, Mao C, Yang D, Ke Z, Huang L, Yang Z, Qin R, Huang Y, Lv W, Hu Z, Xu Y. Altered neuroimaging patterns of cerebellum and cognition underlying the gait and balance dysfunction in cerebral small vessel disease. Front Aging Neurosci 2023; 15:1117973. [PMID: 36967823 PMCID: PMC10032207 DOI: 10.3389/fnagi.2023.1117973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BackgroundThe mechanism of gait and balance dysfunction (GBD) in cerebral small vessel disease (CSVD) remains unclear. Evidence supports cognition engages in GBD of CSVD. The cerebellum is important in motor and cognition, while little is known about the influence of the cerebellum on GBD in CSVD.MethodsThis study is a retrospective cohort study. All participants of this study were enrolled from the CSVD individuals in Nanjing Drum Tower Hospital from 2017 to 2021. The GBD of CSVD patients was defined as Tinetti Test score ≤ 23. Cerebral cortical thickness, cerebellar gray matter volume, the amplitude of low-frequency fluctuation, functional connectivity, and modular interaction were calculated to determine the cortical atrophy and activity patterns of CSVD patients with GBD. The effect of cognitive domains during GBD in CSVD patients was explored by correlation analyses.ResultsA total of 25 CSVD patients were recruited in CSVD patients with GBD group (Tinetti Test score ≤ 23, mean age ± standard deviation: 70.000 ± 6.976 years), and 34 CSVD patients were recruited in CSVD patients without GBD group (Tinetti Test score > 23, mean age ± standard deviation: 64.029 ± 9.453 years). CSVD patients with GBD displayed worse cognitive performance and cortical atrophy in the right cerebellum VIIIa and bilateral superior temporal gyrus than those without GBD. The right postcentral gyrus, left inferior temporal gyrus, right angular gyrus, right supramarginal gyrus and right middle frontal gyrus were functionally overactivated and showed decreased modular interaction with the right cerebellum. Tinetti Test scores were negatively related to the volume of the right cerebellum VIIIa in CSVD patients with GBD. Notably, memory, especially visuospatial memory, was greatly associated with GBD in CSVD.ConclusionThe cortical atrophy and altered functional activity in sensorimotor area and ventral attention network in the cerebellum and cerebrum may underlying the GBD in CSVD. Memory might be critically cognitively responsible for GBD in CSVD.
Collapse
Affiliation(s)
- Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chenglu Mao
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Lili Huang
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Zhiyuan Yang
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Yanan Huang
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Weiping Lv
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Zheqi Hu
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing Drum Tower Hospital, Nanjing, China
- *Correspondence: Yun Xu,
| |
Collapse
|