1
|
Zhou J, Liu M, Park S. Association of Metabolic Diseases and Moderate Fat Intake with Myocardial Infarction Risk. Nutrients 2024; 16:4273. [PMID: 39770895 PMCID: PMC11679910 DOI: 10.3390/nu16244273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) can range from mild to severe cardiovascular events and typically develops through complex interactions between genetic and lifestyle factors. OBJECTIVES We aimed to understand the genetic predisposition associated with MI through genetic correlation, colocalization analysis, and cells' gene expression values to develop more effective prevention and treatment strategies to reduce its burden. METHODS A polygenic risk score (PRS) was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS that affect MI risk in adults over 45 years (n = 58,701). Genetic correlation (rg) between MI and metabolic syndrome-related traits was estimated with linkage disequilibrium score regression. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate cellular heterogeneity in MI-associated genes. RESULTS Ten significant genetic variants associated with MI risk were related to cardiac, immune, and brain functions. A high PRS was associated with a threefold increase in MI risk (OR: 3.074, 95% CI: 2.354-4.014, p < 0.001). This increased the risk of MI plus obesity, hyperglycemia, dyslipidemia, and hypertension by about twofold after adjusting for MI-related covariates (p < 0.001). The PRS interacted with moderate fat intake (>15 energy percent), alcohol consumption (<30 g/day), and non-smoking, reducing MI risk in participants with a high PRS. MI was negatively correlated with the consumption of olive oil, sesame oil, and perilla oil used for cooking (rg = -0.364). MI risk was associated with storkhead box 1 (STOX1) and vacuolar protein sorting-associated protein 26A (VPS26A) in atrial and ventricular cardiomyocytes and fibroblasts. CONCLUSIONS This study identified novel genetic variants and gene expression patterns associated with MI risk, influenced by their interaction with fat and alcohol intake, and smoking status. Our findings provide insights for developing personalized prevention and treatment strategies targeting this complex clinical presentation of MI.
Collapse
Affiliation(s)
- Junyu Zhou
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China;
| | - Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048011, China;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bungil, BaeBang-Yup, Asan 31499, Republic of Korea
| |
Collapse
|
2
|
Reay WR, Clarke E, Eslick S, Riveros C, Holliday EG, McEvoy MA, Peel R, Hancock S, Scott RJ, Attia JR, Collins CE, Cairns MJ. Using Genetics to Inform Interventions Related to Sodium and Potassium in Hypertension. Circulation 2024; 149:1019-1032. [PMID: 38131187 PMCID: PMC10962430 DOI: 10.1161/circulationaha.123.065394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hypertension is a key risk factor for major adverse cardiovascular events but remains difficult to treat in many individuals. Dietary interventions are an effective approach to lower blood pressure (BP) but are not equally effective across all individuals. BP is heritable, and genetics may be a useful tool to overcome treatment response heterogeneity. We investigated whether the genetics of BP could be used to identify individuals with hypertension who may receive a particular benefit from lowering sodium intake and boosting potassium levels. METHODS In this observational genetic study, we leveraged cross-sectional data from up to 296 475 genotyped individuals drawn from the UK Biobank cohort for whom BP and urinary electrolytes (sodium and potassium), biomarkers of sodium and potassium intake, were measured. Biologically directed genetic scores for BP were constructed specifically among pathways related to sodium and potassium biology (pharmagenic enrichment scores), as well as unannotated genome-wide scores (conventional polygenic scores). We then tested whether there was a gene-by-environment interaction between urinary electrolytes and these genetic scores on BP. RESULTS Genetic risk and urinary electrolytes both independently correlated with BP. However, urinary sodium was associated with a larger BP increase among individuals with higher genetic risk in sodium- and potassium-related pathways than in those with comparatively lower genetic risk. For example, each SD in urinary sodium was associated with a 1.47-mm Hg increase in systolic BP for those in the top 10% of the distribution of genetic risk in sodium and potassium transport pathways versus a 0.97-mm Hg systolic BP increase in the lowest 10% (P=1.95×10-3). This interaction with urinary sodium remained when considering estimated glomerular filtration rate and indexing sodium to urinary creatinine. There was no strong evidence of an interaction between urinary sodium and a standard genome-wide polygenic score of BP. CONCLUSIONS The data suggest that genetic risk in sodium and potassium pathways could be used in a precision medicine model to direct interventions more specifically in the management of hypertension. Intervention studies are warranted.
Collapse
Affiliation(s)
- William R. Reay
- Schools of Biomedical Sciences and Pharmacy (W.R.R., R.J.S., M.J.C.), The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program (W.R.R., M.J.C.), New Lambton, NSW, Australia
| | - Erin Clarke
- Health Sciences (E.C., S.E., C.E.C.), The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program (E.C., C.E.C.), New Lambton, NSW, Australia
| | - Shaun Eslick
- Health Sciences (E.C., S.E., C.E.C.), The University of Newcastle, Callaghan, NSW, Australia
| | - Carlos Riveros
- Hunter Medical Research Institute (C.R., E.G.H., J.R.A.), New Lambton, NSW, Australia
| | - Elizabeth G. Holliday
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute (C.R., E.G.H., J.R.A.), New Lambton, NSW, Australia
| | - Mark A. McEvoy
- Rural Health School, La Trobe University, Bendigo, Victoria, Australia (M.A.M.)
| | - Roseanne Peel
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
| | - Stephen Hancock
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J. Scott
- Schools of Biomedical Sciences and Pharmacy (W.R.R., R.J.S., M.J.C.), The University of Newcastle, Callaghan, NSW, Australia
- Cancer Detection and Therapy Research Program (R.J.S.), New Lambton, NSW, Australia
| | - John R. Attia
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute (C.R., E.G.H., J.R.A.), New Lambton, NSW, Australia
| | - Clare E. Collins
- Health Sciences (E.C., S.E., C.E.C.), The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program (E.C., C.E.C.), New Lambton, NSW, Australia
| | - Murray J. Cairns
- Schools of Biomedical Sciences and Pharmacy (W.R.R., R.J.S., M.J.C.), The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program (W.R.R., M.J.C.), New Lambton, NSW, Australia
| |
Collapse
|
3
|
Ferguson JJA, Clarke E, Stanford J, Burrows T, Wood L, Collins C. Dietary metabolome profiles of a Healthy Australian Diet and a Typical Australian Diet: protocol for a randomised cross-over feeding study in Australian adults. BMJ Open 2023; 13:e073658. [PMID: 37524561 PMCID: PMC10391791 DOI: 10.1136/bmjopen-2023-073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
INTRODUCTION Traditional dietary assessment methods such as 24-hour recalls and food frequency questionnaires rely on self-reported data and are prone to error, bias and inaccuracy. Identification of dietary metabolites associated with different dietary patterns can provide objective markers of whole diet patterns that account for metabolism and individual responses to dietary interventions. Additionally, few studies have investigated country-specific healthy and unhealthy dietary patterns using metabolomics. Therefore, the current study aims to identify urinary and plasma metabolites that characterise a 'healthy' (aligned with current national dietary guidelines) and an 'unhealthy' dietary pattern (Typical Australian Diet) in Australian adults. METHODS AND ANALYSIS The Diet Quality Feeding Study (DQFS) is an 8-week cross-over feeding study that will recruit 40 healthy adults from the Hunter region (NSW, Australia). Data collected includes biospecimens (whole blood, urine, stool) for quantification of dietary metabolite biomarkers; questionnaires (medical history/demographic, physical activity, quality of life); physical measures (anthropometry, body composition, waist circumference, blood pressure, arterial pressure); skin carotenoids and dietary intake (24-hour recalls, food frequency questionnaire). Participants will attend the research facility every 2 weeks (end of the run-in, each diet intervention and washout period) for collection of physical measures. All food will be provided to participants for each dietary intervention period, and participants will return to their usual diet during the run-in and washout periods. Targeted and untargeted metabolomics using liquid chromatography-mass spectrometry and/or proton nuclear magnetic resonance (1H-NMR) spectroscopy will be used to identify metabolites in biospecimens associated with dietary intake. ETHICS AND DISSEMINATION This study is approved by the Hunter New England Human Research Ethics Committee (HNEHREC; 2022/ETH01649) and the University of Newcastle's Human Research Ethics Committee (HREC; H-2022-0330). Findings will be disseminated to study participants, funding bodies supporting the DQFS, peer-review publications and presented at scientific conferences within the field of research. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12622001321730).
Collapse
Affiliation(s)
- Jessica Jayne Anne Ferguson
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Erin Clarke
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jordan Stanford
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tracy Burrows
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lisa Wood
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Clare Collins
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|