1
|
Feng Y, Li Z, Yang Y, Shen L, Li X, Liu X, Zhang X, Zhang J, Ren F, Wang Y, Liu C, Han G, Wang X, Kuang T, Shen JR, Wang W. Structures of PSI-FCPI from Thalassiosira pseudonana grown under high light provide evidence for convergent evolution and light-adaptive strategies in diatom FCPIs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:949-966. [PMID: 39670505 DOI: 10.1111/jipb.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.20 Å resolutions from Thalassiosira pseudonana grown under high light (HL) conditions. Among them, five FCPIs are stably associated with the PSI core, these include Lhcr3, RedCAP, Lhcq8, Lhcf10, and FCP3. The eight additional Lhcr-type FCPIs are loosely associated with the PSI core and detached under the present purification conditions. The pigments of this centric diatom showed a higher proportion of chlorophylls a, diadinoxanthins, and diatoxanthins; some of the chlorophyll as and diadinoxanthins occupy the locations of fucoxanthins found in the huge PSI-FCPI from another centric diatom Chaetoceros gracilis grown under low-light conditions. These additional chlorophyll as may form more energy transfer pathways and additional diadinoxanthins may form more energy dissipation sites relying on the diadinoxanthin-diatoxanthin cycle. These results reveal the assembly mechanism of FCPIs and corresponding light-adaptive strategies of T. pseudonana PSI-FCPI, as well as the convergent evolution of the diatom PSI-FCPI structures.
Collapse
Affiliation(s)
- Yue Feng
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Lili Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xueyang Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- Department of Chemistry and Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jinyang Zhang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ren
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Guangye Han
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuchu Wang
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Wenda Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
2
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
3
|
Luo L, Milon TI, Tandoh EK, Galdamez WJ, Chistoserdov AY, Yu J, Kern J, Wang Y, Xu W. Development of a TSR-based method for understanding structural relationships of cofactors and local environments in photosystem I. BMC Bioinformatics 2025; 26:15. [PMID: 39810075 PMCID: PMC11731568 DOI: 10.1186/s12859-025-06038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys). A comprehensive study was conducted, by taking advantage of the PS I 3D structures and the TSR-based algorithm, to answer three questions: (i) Are electron cofactors including P700, A-1 and A0, which are chemically identical chlorophylls, structurally different? (ii) There are two electron transfer chains (A and B branches) in PS I. Are the cofactors on both branches structurally different? (iii) Are the amino acids in cofactor binding sites structurally different from those not in cofactor binding sites? RESULTS The key contributions and important findings include: (i) a novel TSR-based method for representing 3D structures of pigments as well as for quantifying pigment structures was developed; (ii) the results revealed that the redox cofactor, P700, are structurally conserved and different from other redox factors. Similar situations were also observed for both A-1 and A0; (iii) the results demonstrated structural differences between A and B branches for the redox cofactors P700, A-1, A0 and A1 as well as their cofactor binding sites; (iv) the tryptophan residues close to A0 and A1 are structurally conserved; (v) The TSR-based method outperforms the Root Mean Square Deviation (RMSD) and the Ultrafast Shape Recognition (USR) methods. CONCLUSIONS The structural analyses of redox cofactors and their binding sites provide a foundation for understanding the unique chemical and physical properties of each redox cofactor in PS I, which are essential for modulating the rate and direction of energy and electron transfers.
Collapse
Affiliation(s)
- Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Tarikul I Milon
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Elijah K Tandoh
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Walter J Galdamez
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Andrei Y Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Jan Kern
- Bioenergetics Department, MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| |
Collapse
|
4
|
Noji T, Saito K, Ishikita H. How the Electron-Transfer Cascade is Maintained in Chlorophyll- d Containing Photosystem I. Biochemistry 2025; 64:203-212. [PMID: 39656068 PMCID: PMC11716663 DOI: 10.1021/acs.biochem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Photosystem I (PSI) from Acaryochloris marina utilizes chlorophyll d (Chld) with a formyl group as its primary pigment, which is more red-shifted than chlorophyll a (Chla) in PSI from Thermosynechococcus elongatus. Using the cryo-electron microscopy structure and solving the linear Poisson-Boltzmann equation, here we report the redox potential (Em) values in A. marina PSI. The Em(Chld) values at the paired chlorophyll site, [PAPB], are nearly identical to the corresponding Em(Chla) values in T. elongatus PSI, despite Chld having a 200 mV lower reduction power. The accessory chlorophyll site, A-1, in the B branch exhibits an extensive H-bond network with its ligand water molecule, contributing to Em(A-1B) being lower than Em(A-1A). The substitution of pheophytin a (Pheoa) with Chla at the electron acceptor site, A0, decreases Em(A0), resulting in an uphill electron transfer from A-1. The impact of the A-1 formyl group on Em(A0) is offset by the reorientation of the A0 ester group. It seems likely that Pheoa is necessary for A. marina PSI to maintain the overall electron-transfer cascade characteristic of PSI in its unique light environment.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Agostini A, Calcinoni A, Petrova AA, Bortolus M, Casazza AP, Carbonera D, Santabarbara S. An unusual triplet population pathway in the Reaction Centre of the Chlorophyll-d binding Photosystem I of A. marina, as revealed by a combination of TR-EPR and ODMR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149515. [PMID: 39349288 DOI: 10.1016/j.bbabio.2024.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Photo-induced Chlorophyll (Chl) triplet states in the isolated Photosystem I (PSI) of Acaryochloris marina, that harbours Chl d as its main pigment, were investigated by Optically Detected Magnetic Resonance (ODMR) and Time-Resolved Electron Paramagnetic Resonance (TR-EPR), and as a function of pre-illumination of the sample under reducing redox poising. Fluorescence Detected Magnetic Resonance (FDMR) allowed resolving four Chl d triplet (3Chl d) populations (T1-T4) both in untreated and illuminated samples in the presence of ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The FDMR signals increased following the pre-illumination treatment, particularly for the T3 and T4 populations, which are therefore sensitive to the redox state of PSI cofactors. Microwave-induced Triplet minus Singlet (TmS) spectra were detected in the |D|-|E| resonance window of the T3 and T4 triplets. These showed a broad singlet bleaching centred at 740 nm and also displayed complex spectral structure with several derivative-like features, indicating that both the T3 and T43Chl d populations are associated with the PSI reaction centre (RC) triplet, P3740. Parallel measurements by TR-EPR demonstrated that triplet signals observed under all conditions investigated are dominated by an electron spin polarisation (esp), which is typical of intersystem crossing, differently from what expected for recombination triplet states formed from a radical pair precursor. Moreover, stronger reductant conditions obtained by pre-illumination of the samples in the presence of dithionite and 5-methylphenazinium methyl sulfate (PMS) did not lead to a recombination triplet state esp, but rather to a decrease of the whole signal intensity. The energetics of A. marina PSI and the possible occurrence of distributions of cofactors redox properties are discussed in order to address the unexpected P3740 esp.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Calcinoni
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Leninskye Gory 1 building, 40 Moscow, Russia
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy.
| |
Collapse
|
6
|
Sellés J, Alric J, Rutherford AW, Davis GA, Viola S. In vivo ElectroChromic Shift measurements of photosynthetic activity in far-red absorbing cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149502. [PMID: 39127329 DOI: 10.1016/j.bbabio.2024.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.
Collapse
Affiliation(s)
- Julien Sellés
- Institute of Physico-Chemical Biology - UMR7141, Paris, France
| | - Jean Alric
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France
| | | | - Geoffry A Davis
- Department of Life Sciences, Imperial College, London, UK; Biology Department, Ludwig-Maximilians University, Munich, Germany
| | - Stefania Viola
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
7
|
Kato K, Nakajima Y, Xing J, Kumazawa M, Ogawa H, Shen JR, Ifuku K, Nagao R. Structural basis for molecular assembly of fucoxanthin chlorophyll a/ c-binding proteins in a diatom photosystem I supercomplex. eLife 2024; 13:RP99858. [PMID: 39480899 PMCID: PMC11527431 DOI: 10.7554/elife.99858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein-protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Jian Xing
- Graduate School of Agriculture, Kyoto UniversityKyotoJapan
| | | | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto UniversityKyotoJapan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka UniversityShizuokaJapan
| |
Collapse
|
8
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
9
|
Nagao R, Yamamoto H, Ogawa H, Ito H, Yamamoto Y, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR. Presence of low-energy chlorophylls d in photosystem I trimer and monomer cores isolated from Acaryochloris sp. NBRC 102871. PHOTOSYNTHESIS RESEARCH 2024; 161:203-212. [PMID: 38935195 DOI: 10.1007/s11120-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hibiki Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuma Yamamoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
10
|
Tian LR, Chen JH. Photosystem I: A Paradigm for Understanding Biological Environmental Adaptation Mechanisms in Cyanobacteria and Algae. Int J Mol Sci 2024; 25:8767. [PMID: 39201454 PMCID: PMC11354412 DOI: 10.3390/ijms25168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The process of oxygenic photosynthesis is primarily driven by two multiprotein complexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations, especially for photosynthetic organisms that grow in special environments. In this review, we make a concise overview of the recent investigations of PSI from photosynthetic microorganisms including prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
Collapse
Affiliation(s)
- Li-Rong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Tan S, Liu L, Jiao JY, Li MM, Hu CJ, Lv AP, Qi YL, Li YX, Rao YZ, Qu YN, Jiang HC, Soo RM, Evans PN, Hua ZS, Li WJ. Exploring the Origins and Evolution of Oxygenic and Anoxygenic Photosynthesis in Deeply Branched Cyanobacteriota. Mol Biol Evol 2024; 41:msae151. [PMID: 39041196 PMCID: PMC11304991 DOI: 10.1093/molbev/msae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Paul N Evans
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
12
|
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
13
|
Nelson N. Investigating the Balance between Structural Conservation and Functional Flexibility in Photosystem I. Int J Mol Sci 2024; 25:5073. [PMID: 38791114 PMCID: PMC11121529 DOI: 10.3390/ijms25105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Photosynthesis, as the primary source of energy for all life forms, plays a crucial role in maintaining the global balance of energy, entropy, and enthalpy in living organisms. Among its various building blocks, photosystem I (PSI) is responsible for light-driven electron transfer, crucial for generating cellular reducing power. PSI acts as a light-driven plastocyanin-ferredoxin oxidoreductase and is situated in the thylakoid membranes of cyanobacteria and the chloroplasts of eukaryotic photosynthetic organisms. Comprehending the structure and function of the photosynthetic machinery is essential for understanding its mode of action. New insights are offered into the structure and function of PSI and its associated light-harvesting proteins, with a specific focus on the remarkable structural conservation of the core complex and high plasticity of the peripheral light-harvesting complexes.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
15
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
16
|
Kimura A, Kitoh-Nishioka H, Kondo T, Oh-Oka H, Itoh S, Azai C. Experimental and Theoretical Mutation of Exciton States on the Smallest Type-I Photosynthetic Reaction Center Complex of a Green Sulfur Bacterium Chlorobaclum tepidum. J Phys Chem B 2024; 128:731-743. [PMID: 38198639 DOI: 10.1021/acs.jpcb.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The exciton states on the smallest type-I photosynthetic reaction center complex of a green sulfur bacterium Chlorobaculum tepidum (GsbRC) consisting of 26 bacteriochlorophylls a (BChl a) and four chlorophylls a (Chl a) located on the homodimer of two PscA reaction center polypeptides were investigated. This analysis involved the study of exciton states through a combination of theoretical modeling and the genetic removal of BChl a pigments at eight sites. (1) A theoretical model of the pigment assembly exciton state on GsbRC was constructed using Poisson TrESP (P-TrESP) and charge density coupling (CDC) methods based on structural information. The model reproduced the experimentally obtained absorption spectrum, circular dichroism spectrum, and excitation transfer dynamics, as well as explained the effects of mutation. (2) Eight BChl a molecules at different locations on the GsbRC were selectively removed by genetic exchange of the His residue, which ligates the central Mg atom of BChl a, with the Leu residue on either one or two PscAs in the RC. His locations are conserved among all type-I RC plant polypeptide, cyanobacteria, and bacteria amino acid sequences. (3) Purified mutant-GsbRCs demonstrated distinct absorption and fluorescence spectra at 77 K, which were different from each other, suggesting successful pigment removal. (4) The same mutations were applied to the constructed theoretical model to analyze the outcomes of these mutations. (5) The combination of theoretical predictions and experimental mutations based on structural information is a new tool for studying the function and evolution of photosynthetic reaction centers.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hirotaka Kitoh-Nishioka
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chihiro Azai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
17
|
Wang Q, Zhang H, Wei L, Guo R, Liu X, Zhang M, Fan J, Liu S, Liao J, Huang Y, Wang Z. Yellow-Green Leaf 19 Encoding a Specific and Conservative Protein for Photosynthetic Organisms Affects Tetrapyrrole Biosynthesis, Photosynthesis, and Reactive Oxygen Species Metabolism in Rice. Int J Mol Sci 2023; 24:16762. [PMID: 38069084 PMCID: PMC10706213 DOI: 10.3390/ijms242316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Chlorophyll is the main photosynthetic pigment and is crucial for plant photosynthesis. Leaf color mutants are widely used to identify genes involved in the synthesis or metabolism of chlorophyll. In this study, a spontaneous mutant, yellow-green leaf 19 (ygl19), was isolated from rice (Oryza sativa). This ygl19 mutant showed yellow-green leaves and decreased chlorophyll level and net photosynthetic rate. Brown necrotic spots appeared on the surface of ygl19 leaves at the tillering stage. And the agronomic traits of the ygl19 mutant, including the plant height, tiller number per plant, and total number of grains per plant, were significantly reduced. Map-based cloning revealed that the candidate YGL19 gene was LOC_Os03g21370. Complementation of the ygl19 mutant with the wild-type CDS of LOC_Os03g21370 led to the restoration of the mutant to the normal phenotype. Evolutionary analysis revealed that YGL19 protein and its homologues were unique for photoautotrophs, containing a conserved Ycf54 functional domain. A conserved amino acid substitution from proline to serine on the Ycf54 domain led to the ygl19 mutation. Sequence analysis of the YGL19 gene in 4726 rice accessions found that the YGL19 gene was conserved in natural rice variants with no resulting amino acid variation. The YGL19 gene was mainly expressed in green tissues, especially in leaf organs. And the YGL19 protein was localized in the chloroplast for function. Gene expression analysis via qRT-PCR showed that the expression levels of tetrapyrrole synthesis-related genes and photosynthesis-related genes were regulated in the ygl19 mutant. Reactive oxygen species (ROS) such as superoxide anions and hydrogen peroxide accumulated in spotted leaves of the ygl19 mutant at the tillering stage, accompanied by the regulation of ROS scavenging enzyme-encoding genes and ROS-responsive defense signaling genes. This study demonstrates that a novel yellow-green leaf gene YGL19 affects tetrapyrrole biosynthesis, photosynthesis, and ROS metabolism in rice.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxia Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuanzhi Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (M.Z.)
| | - Miao Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (M.Z.)
| | - Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang 330045, China; (Q.W.); (H.Z.); (L.W.); (R.G.); (J.F.); (S.L.); (J.L.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
18
|
Nagao R, Ogawa H, Tsuboshita N, Kato K, Toyofuku R, Tomo T, Shen JR. Isolation and characterization of trimeric and monomeric PSI cores from Acaryochloris marina MBIC11017. PHOTOSYNTHESIS RESEARCH 2023; 157:55-63. [PMID: 37199910 DOI: 10.1007/s11120-023-01025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Reona Toyofuku
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
19
|
Zhang S, Tang K, Yan Q, Li X, Shen L, Wang W, He YK, Kuang T, Han G, Shen JR, Zhang X. Structural insights into a unique PSI-LHCI-LHCII-Lhcb9 supercomplex from moss Physcomitrium patens. NATURE PLANTS 2023; 9:832-846. [PMID: 37095225 DOI: 10.1038/s41477-023-01401-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI) possesses a variable supramolecular organization among different photosynthetic organisms to adapt to different light environments. Mosses are evolutionary intermediates that diverged from aquatic green algae and evolved into land plants. The moss Physcomitrium patens (P. patens) has a light-harvesting complex (LHC) superfamily more diverse than those of green algae and higher plants. Here, we solved the structure of a PSI-LHCI-LHCII-Lhcb9 supercomplex from P. patens at 2.68 Å resolution using cryo-electron microscopy. This supercomplex contains one PSI-LHCI, one phosphorylated LHCII trimer, one moss-specific LHC protein, Lhcb9, and one additional LHCI belt with four Lhca subunits. The complete structure of PsaO was observed in the PSI core. One Lhcbm2 in the LHCII trimer interacts with PSI core through its phosphorylated N terminus, and Lhcb9 mediates assembly of the whole supercomplex. The complicated pigment arrangement provided important information for possible energy-transfer pathways from the peripheral antennae to the PSI core.
Collapse
Affiliation(s)
- Song Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Kailu Tang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiujing Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yi-Kun He
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
20
|
Zhang S, Gao H, Wang L, Zhang Y, Zhou D, Anwar A, Li J, Wang F, Li C, Zhang Y, Gao J. Comparative Transcriptome and Co-Expression Network Analyses Reveal the Molecular Mechanism of Calcium-Deficiency-Triggered Tipburn in Chinese Cabbage ( Brassica rapa L. ssp. Pekinensis). PLANTS (BASEL, SWITZERLAND) 2022; 11:3555. [PMID: 36559667 PMCID: PMC9785529 DOI: 10.3390/plants11243555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Chinese cabbage tipburn is characterized by the formation of necrotic lesions on the margin of leaves, including on the insides of the leafy head. This physiological disorder is associated with a localized calcium deficiency during leaf development. However, little information is available regarding the molecular mechanisms governing Ca-deficiency-triggered tipburn. This study comprehensively analysed the transcriptomic comparison between control and calcium treatments (CK and 0 mM Ca) in Chinese cabbage to determine its molecular mechanism in tipburn. Our analysis identified that the most enriched gene ontology (GO) categories are photosynthesis, thylakoid and cofactor binding. Moreover, the KEGG pathway was most enriched in photosynthesis, carbon metabolism and carbon fixation. We also analyzed the co-expression network by functional categories and identified ten critical hub differentially expressed genes (DEGs) in each gene regulatory network (GRN). These DEGs might involve abiotic stresses, developmental processes, cell wall metabolism, calcium distribution, transcription factors, plant hormone biosynthesis and signal transduction pathways. Under calcium deficiency, CNX1, calmodulin-binding proteins and CMLs family proteins were downregulated compared to CK. In addition, plant hormones such as GA, JA, BR, Auxin and ABA biosynthesis pathways genes were downregulated under calcium treatment. Likewise, HATs, ARLs and TCP transcription factors were reported as inactive under calcium deficiency, and potentially involved in the developmental process. This work explores the specific DEGs' significantly different expression levels in 0 mM Ca and the control involved in plant hormones, cell wall developments, a light response such as chlorophylls and photosynthesis, transport metabolism and defence mechanism and redox. Our results provide critical evidence of the potential roles of the calcium signal transduction pathway and candidate genes governing Ca-deficiency-triggered tipburn in Chinese cabbage.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hanzhong Gao
- Columbian College of Arts & Sciences, Phillips Hall, The George Washington University, 801 22nd St. NW., Washington, DC 20052, USA
| | - Lixia Wang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yihui Zhang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Dandan Zhou
- College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Ali Anwar
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jingjuan Li
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengde Wang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cheng Li
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ye Zhang
- College of Life Science, Huangshan University, Huangshan 245061, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
21
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Cherepanov DA, Petrova AA, Mamedov MD, Vishnevskaya AI, Gostev FE, Shelaev IV, Aybush AV, Nadtochenko VA. Comparative Absorption Dynamics of the Singlet Excited States of Chlorophylls a and d. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1179-1186. [PMID: 36273886 DOI: 10.1134/s000629792210011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasia A Petrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna I Vishnevskaya
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseniy V Aybush
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Lv Y, Amanullah S, Liu S, Zhang C, Liu H, Zhu Z, Zhang X, Gao P, Luan F. Comparative Transcriptome Analysis Identified Key Pathways and Genes Regulating Differentiated Stigma Color in Melon ( Cucumis melo L.). Int J Mol Sci 2022; 23:ijms23126721. [PMID: 35743161 PMCID: PMC9224399 DOI: 10.3390/ijms23126721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Stigma color is an important morphological trait in many flowering plants. Visual observations in different field experiments have shown that a green stigma in melons is more attractive to natural pollinators than a yellow one. In the current study, we evaluated the characterization of two contrasted melon lines (MR-1 with a green stigma and M4-7 with a yellow stigma). Endogenous quantification showed that the chlorophyll and carotenoid content in the MR-1 stigmas was higher compared to the M4-7 stigmas. The primary differences in the chloroplast ultrastructure at different developmental stages depicted that the stigmas of both melon lines were mainly enriched with granum, plastoglobulus, and starch grains. Further, comparative transcriptomic analysis was performed to identify the candidate pathways and genes regulating melon stigma color during key developmental stages (S1–S3). The obtained results indicated similar biological processes involved in the three stages, but major differences were observed in light reactions and chloroplast pathways. The weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) uncovered a “black” network module (655 out of 5302 genes), mainly corresponding to light reactions, light harvesting, the chlorophyll metabolic process, and the chlorophyll biosynthetic process, and exhibited a significant contribution to stigma color. Overall, the expression of five key genes of the chlorophyll synthesis pathway—CAO (MELO03C010624), CHLH (MELO03C007233), CRD (MELO03C026802), HEMA (MELO03C011113), POR (MELO03C016714)—were checked at different stages of stigma development in both melon lines using quantitative real time polymerase chain reaction (qRT-PCR). The results exhibited that the expression of these genes gradually increased during the stigma development of the MR-1 line but decreased in the M4-7 line at S2. In addition, the expression trends in different stages were the same as RNA-seq, indicating data accuracy. To sum up, our research reveals an in-depth molecular mechanism of stigma coloration and suggests that chlorophyll and related biological activity play an important role in differentiating melon stigma color.
Collapse
Affiliation(s)
- Yuanzuo Lv
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chen Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xian Zhang
- Horticulture College of Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.G.); (F.L.)
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.G.); (F.L.)
| |
Collapse
|
24
|
Kimura A, Kitoh-Nishioka H, Aota T, Hamaguchi T, Yonekura K, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Ifuku K, Yamashita E, Kashino Y, Itoh S. Theoretical Model of the Far-Red-Light-Adapted Photosystem I Reaction Center of Cyanobacterium Acaryochloris marina Using Chlorophyll d and the Effect of Chlorophyll Exchange. J Phys Chem B 2022; 126:4009-4021. [PMID: 35617171 DOI: 10.1021/acs.jpcb.2c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al. (Nat. Commun., 2021, 12, 2333). A. marina performs photosynthesis under the visible to far-red light (400-750 nm), which is absorbed by chlorophyll d (Chl-d). It is in contrast to the situation of all the other oxygenic photosynthetic processes of cyanobacteria and plants, which contains chlorophyll a (Chl-a) that absorbs only 400-700 nm visible light. AmPSI contains 70 Chl-d, 1 Chl-d', 2 pheophytin a (Pheo-a), and 12 carotenoids in the currently available structure. A special pair of Chl-d/Chl-d' acts as the electron donor (P740) and two Pheo-a act as the primary electron acceptor A0 as the counterparts of P700 and Chl-a, respectively, of Chl-a-type PSIs. The exciton Hamiltonian of AmPSI was constructed considering the excitonic coupling strength and site energy shift of individual pigments using the Poisson-TrESP (P-TrESP) and charge density coupling (CDC) methods. The model was constructed to fit the experimentally measured spectra of absorption and circular dichroism (CD) spectra during downhill/uphill excitation energy transfer processes. The constructed theoretical model of AmPSI was further compared with the Chl-a-type PSI of Thermosynechococcus elongatus (TePSI), which contains only Chl-a and Chl-a'. The functional properties of AmPSI and TePSI were further examined by the in silico exchange of Chl-d by Chl-a in the models.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | - Toshimichi Aota
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | | | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Kashino
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
25
|
Yoshihara A, Kobayashi K. Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2735-2750. [PMID: 35560200 DOI: 10.1093/jxb/erac017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 06/15/2023]
Abstract
In the thylakoid membrane of cyanobacteria and chloroplasts, many proteins involved in photosynthesis are associated with or integrated into the fluid bilayer matrix formed by four unique glycerolipid classes, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol, and phosphatidylglycerol. Biochemical and molecular genetic studies have revealed that these glycerolipids play essential roles not only in the formation of thylakoid lipid bilayers but also in the assembly and functions of photosynthetic complexes. Moreover, considerable advances in structural biology have identified a number of lipid molecules within the photosynthetic complexes such as PSI and PSII. These data have provided important insights into the association of lipids with protein subunits in photosynthetic complexes and the distribution of lipids in the thylakoid membrane. Here, we summarize recent high-resolution observations of lipid molecules in the structures of photosynthetic complexes from plants, algae, and cyanobacteria, and evaluate the distribution of lipids among photosynthetic protein complexes and thylakoid lipid bilayers. By integrating the structural information into the findings from biochemical and molecular genetic studies, we highlight the conserved and differentiated roles of lipids in the assembly and functions of photosynthetic complexes among plants, algae, and cyanobacteria.
Collapse
Affiliation(s)
- Akiko Yoshihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, OsakaJapan
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, OsakaJapan
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, OsakaJapan
| |
Collapse
|
26
|
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, Shen JR. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. eLife 2022; 11:73990. [PMID: 35404232 PMCID: PMC9000952 DOI: 10.7554/elife.73990] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | | | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | | - Akio Murakami
- Graduate School of Science, Kobe University
- Research Center for Inland Seas, Kobe University
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University
| | | | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
27
|
Shen JR. Structure, Function, and Variations of the Photosystem I-Antenna Supercomplex from Different Photosynthetic Organisms. Subcell Biochem 2022; 99:351-377. [PMID: 36151382 DOI: 10.1007/978-3-031-00793-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photosystem I (PSI) is a protein complex functioning in light-induced charge separation, electron transfer, and reduction reactions of ferredoxin in photosynthesis, which finally results in the reduction of NAD(P)- to NAD(P)H required for the fixation of carbon dioxide. In eukaryotic algae, PSI is associated with light-harvesting complex I (LHCI) subunits, forming a PSI-LHCI supercomplex. LHCI harvests and transfers light energy to the PSI core, where charge separation and electron transfer reactions occur. During the course of evolution, the number and sequences of protein subunits and the pigments they bind in LHCI change dramatically depending on the species of organisms, which is a result of adaptation of organisms to various light environments. In this chapter, I will describe the structure of various PSI-LHCI supercomplexes from different organisms solved so far either by X-ray crystallography or by cryo-electron microscopy, with emphasis on the differences in the number, structures, and association patterns of LHCI subunits associated with the PSI core found in different organisms.
Collapse
Affiliation(s)
- Jian-Ren Shen
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Bai T, Guo L, Xu M, Tian L. Structural Diversity of Photosystem I and Its Light-Harvesting System in Eukaryotic Algae and Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:781035. [PMID: 34917114 PMCID: PMC8669154 DOI: 10.3389/fpls.2021.781035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Photosystem I (PSI) is one of the most efficient photoelectric apparatus in nature, converting solar energy into condensed chemical energy with almost 100% quantum efficiency. The ability of PSI to attain such high conversion efficiency depends on the precise spatial arrangement of its protein subunits and binding cofactors. The PSI structures of oxygenic photosynthetic organisms, namely cyanobacteria, eukaryotic algae, and plants, have undergone great variation during their evolution, especially in eukaryotic algae and vascular plants for which light-harvesting complexes (LHCI) developed that surround the PSI core complex. A detailed understanding of the functional and structural properties of this PSI-LHCI is not only an important foundation for understanding the evolution of photosynthetic organisms but is also useful for designing future artificial photochemical devices. Recently, the structures of such PSI-LHCI supercomplexes from red alga, green alga, diatoms, and plants were determined by X-ray crystallography and single-particle cryo-electron microscopy (cryo-EM). These findings provide new insights into the various structural adjustments of PSI, especially with respect to the diversity of peripheral antenna systems arising via evolutionary processes. Here, we review the structural details of the PSI tetramer in cyanobacteria and the PSI-LHCI and PSI-LHCI-LHCII supercomplexes from different algae and plants, and then discuss the diversity of PSI-LHCI in oxygenic photosynthesis organisms.
Collapse
Affiliation(s)
| | | | | | - Lirong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
29
|
Gisriel CJ, Azai C, Cardona T. Recent advances in the structural diversity of reaction centers. PHOTOSYNTHESIS RESEARCH 2021; 149:329-343. [PMID: 34173168 PMCID: PMC8452559 DOI: 10.1007/s11120-021-00857-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs.
Collapse
Affiliation(s)
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|