1
|
Chen M, Hong Y, Fan J, Cao D, Yin C, Yu A, Qiu J, Huang X, Wei X. Genetic interaction network of quantitative trait genes for heading date in rice. J Genet Genomics 2025:S1673-8527(25)00001-3. [PMID: 39778714 DOI: 10.1016/j.jgg.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Several quantitative trait genes (QTGs) related to rice heading date, a key factor for crop development and yield, have been identified, along with complex interactions among genes. However, a comprehensive genetic interaction network for these QTGs has not yet been established. In this study, we use 18K-rice lines to identify QTGs and their epistatic interactions affecting rice heading date. We identify 264 pairs of interacting QTL and construct a comprehensive genetic network of these QTL. On average, the epistatic effects of QTL pairs are estimated to be approximately 12.5% of additive effects of identified QTL. Importantly, epistasis vary among different alleles of several heading date genes. Additionally, 57 pairs of interacting QTGs are also significant in their epistatic effects on 12 other agronomic traits. The identified QTL genetic interactions are further validated using near-isogenic lines, yeast two-hybrid, and split-luciferase complementation assays. Overall, this study provides a genetic network of rice heading date genes, which plays a crucial role in regulating rice heading date and influencing multiple related agronomic traits. This network serves as a foundation for understanding the genetic mechanisms of rice quantitative traits and for advancing rice molecular breeding.
Collapse
Affiliation(s)
- Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifeng Hong
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiongjiong Fan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang 311401, China
| | - Dengyi Cao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chong Yin
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Anjie Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
2
|
Peng M, Gan F, Pan C, Lin X, Lin F, Ren Y, Na S, Zhu X, Tang W, Wu Z, Fan X, Chen K. Expression of AtNF-YB1 activates early flowering, showing potential in breeding hybrid rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14538. [PMID: 39344294 DOI: 10.1111/ppl.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
The nuclear factor Y (NF-Y) has been shown to be involved in plant growth and development in response to various environmental signals. However, the integration of these mechanisms into breeding practices for new cultivars has not been extensively investigated. In this study, the Arabidopsis gene AtNF-YB1 was introduced into rice, including inbred Kasalath and the hybrids Jinfeng × Chenghui 727 and Jinfeng × Chuanhui 907. The obtained transgenic rice showed early flowering under both natural long day (NLD) and natural short day (NSD) conditions. For the inbred Kasalath, the transgenic lines clearly showed a shorter plant height and lower grain yield, with a decrease in spike length and grain number but more productive panicles. However, the hybrids with AtNF-YB1 had much smaller or even zero reduction in spike length and grain number and more productive panicles. Thus, maintained or even increased grain yields of the transgenic hybrids were recorded under the NLD conditions. Quantitative PCR analysis indicated that the rice flowering initiation pathways were early activated via the suppression of Ghd7 induction in the transgenic rice. RNA-Seq further demonstrated that three pathways related to plant photosynthesis were markedly upregulated in both Jinfeng B and the hybrid Jinfeng × Chuanhui 907 with AtNF-YB1 expression. Moreover, physiological experiments showed an upregulation of photosynthetic rates in the transgenic lines. Taken together, this study suggests that AtNF-YB1 expression in rice not only induces early flowering but also benefits photosynthesis, which might be used to develop hybrid varieties with early ripening.
Collapse
Affiliation(s)
- Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Gan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunmei Pan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaomin Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanhang Ren
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shungui Na
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinhai Zhu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenwen Tang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhixue Wu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Fan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kegui Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
3
|
Qi T, Wang M, Wang P, Wang L, Wang J. Insights into heterosis from histone modifications in the flag leaf of inter-subspecific hybrid rice. BMC PLANT BIOLOGY 2024; 24:767. [PMID: 39134930 PMCID: PMC11318154 DOI: 10.1186/s12870-024-05487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Inter-subspecific hybrid rice represents a significant breakthrough in agricultural genetics, offering higher yields and better resilience to various environmental stresses. While the utilization of these hybrids has shed light on the genetic processes underlying hybridization, understanding the molecular mechanisms driving heterosis remains a complex and ongoing challenge. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to analyze genome-wide profiles of H3K4me3 and H3K27me3 modifications in the inter-subspecific hybrid rice ZY19 and its parents, Z04A and ZHF1015, then combined them with the transcriptome and DNA methylation data to uncover the effects of histone modifications on gene expression and the contribution of epigenetic modifications to heterosis. RESULTS In the hybrid, there were 8,126 and 1,610 different peaks for H3K4me3 and H3K27me3 modifications when compared to its parents, respectively, with the majority of them originating from the parental lines. The different modifications between the hybrid and its parents were more frequently observed as higher levels in the hybrid than in the parents. In ZY19, there were 476 and 84 allele-specific genes with H3K4me3 and H3K27me3 modifications identified, representing 7.9% and 12% of the total analyzed genes, respectively. Only a small portion of genes that showed differences in parental H3K4me3 and H3K27me3 modifications which demonstrated allele-specific histone modifications (ASHM) in the hybrid. The H3K4me3 modification level in the hybrid was significantly lower compared to the parents. In the hybrid, DNA methylation occurs more frequently among histone modification target genes. Additionally, over 62.58% of differentially expressed genes (DEGs) were affected by epigenetic variations. Notably, there was a strong correlation observed between variations in H3K4me3 modifications and gene expression levels in the hybrid and its parents. CONCLUSION These findings highlight the substantial impact of histone modifications and DNA methylation on gene expression during hybridization. Epigenetic variations play a crucial role in controlling the differential expression of genes, with potential implications for heterosis.
Collapse
Affiliation(s)
- Tianpu Qi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixuan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Wang C, Wang Z, Cai Y, Zhu Z, Yu D, Hong L, Wang Y, Lv W, Zhao Q, Si L, Liu K, Han B. A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1669-1680. [PMID: 38450899 PMCID: PMC11123404 DOI: 10.1111/pbi.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunxiao Cai
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Danheng Yu
- Department of Life Sciences, Imperial College LondonSouth KensingtonLondonUK
| | - Lei Hong
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Wei Lv
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Kun Liu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
5
|
Zhou D, Zhou X, Sun C, Tang G, Liu L, Chen L, He H, Xiong Q. Transcriptome and Metabolome Analysis Provides Insights into the Heterosis of Yield and Quality Traits in Two Hybrid Rice Varieties (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232112934. [PMID: 36361748 PMCID: PMC9654843 DOI: 10.3390/ijms232112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Heterosis is a common biological phenomenon that is useful for breeding superior lines. Using heterosis to increase the yield and quality of crops is one of the main achievements of modern agricultural science. In this study, we analysed the transcriptome and metabolome of two three-line hybrid rice varieties, Taiyou 871 (TY871), and Taiyou 398 (TY398) and the parental grain endosperm using RNA-seq (three biological repeats per variety) and untargeted metabolomic (six biological repeats per variety) methods. TY871 and TY398 showed specific heterosis in yield and quality. Transcriptome analysis of the hybrids revealed 638 to 4059 differentially expressed genes in the grain when compared to the parents. Metabolome analysis of the hybrids revealed 657 to 3714 differential grain metabolites when compared to the parents. The honeydew1 and grey60 module core genes Os04g0350700 and Os05g0154700 are involved in the regulation of awn development, grain size, and grain number, as well as the regulation of grain length and plant height, respectively. Rice grain length may be an important indicator for improving the quality of three-line hybrid rice. In addition, the rice quality-related metabolite NEG_M341T662 was highly connected to the module core genes Os06g0254300 and Os03g0168100. The functions of Os06g0254300 and Os03g0168100 are EF-hand calcium binding protein and late embroideries absolute protein repeat containing protein, respectively. These genes may play a role in the formation of rice quality. We constructed a gene and metabolite coexpression network, which provides a scientific basis for the utilization of heterosis in producing high-yield and high-quality hybrid rice.
Collapse
Affiliation(s)
- Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinyi Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Guoping Tang
- Jiangxi Academy of Agricultural Sciences Rice Research Institute, Nanchang 330200, China
| | - Lin Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Le Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (H.H.); (Q.X.)
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.H.); (Q.X.)
| |
Collapse
|
6
|
Wang X, Zhou T, Li G, Yao W, Hu W, Wei X, Che J, Yang H, Shao L, Hua J, Li X, Xiao J, Xing Y, Ouyang Y, Zhang Q. A Ghd7-centered regulatory network provides a mechanistic approximation to optimal heterosis in an elite rice hybrid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:68-83. [PMID: 35912411 DOI: 10.1111/tpj.15928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.
Collapse
Affiliation(s)
- Xianmeng Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianhao Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Hu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wei
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haichuan Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Shao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinping Hua
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Zhang F, Zhang C, Zhao X, Zhu S, Chen K, Zhou G, Wu Z, Li M, Zheng T, Wang W, Yan Z, Fei Q, Li Z, Chen J, Xu J. Genomic Architecture of Yield Performance of an Elite Rice Hybrid Revealed by its Derived Recombinant Inbred Line and Their Backcross Hybrid Populations. RICE (NEW YORK, N.Y.) 2022; 15:49. [PMID: 36181551 PMCID: PMC9526777 DOI: 10.1186/s12284-022-00595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since its development and wide adoption in China, hybrid rice has reached the yield plateau for more than three decades. To understand the genetic basis of heterosis in rice and accelerate hybrid rice breeding, the yield performances of the elite rice hybrid, Quan-you-si-miao (QYSM) were genetically dissected by whole-genome sequencing, large-scale phenotyping of 1061 recombined inbred lines (RILs) and 1061 backcross F1 (BCF1) hybrids derived from QYSM's parents across three environments and gene-based analyses. RESULTS Genome-wide scanning of 13,847 segregating genes between the parents and linkage mapping based on 855 bins across the rice genome and phenotyping experiments across three environments resulted in identification of large numbers of genes, 639 main-effect QTLs (M-QTLs) and 2736 epistatic QTLs with significant additive or heterotic effects on the trait performances of the combined population consisting of RILs and BCF1 hybrids, most of which were environment-specific. The 324 M-QTLs affecting yield components included 32.7% additive QTLs, 38.0% over-dominant or dominant ones with strong and positive effects and 29.3% under-dominant or incomplete recessive ones with significant negative heterotic effects. 63.6% of 1403 genes with allelic introgression from subspecies japonica/Geng in the parents of QYSM may have contributed significantly to the enhanced yield performance of QYSM. CONCLUSIONS The parents of QYSM and related rice hybrids in China carry disproportionally more additive and under-dominant genes/QTLs affecting yield traits. Further focus in indica/Xian rice breeding should shift back to improving inbred varieties, while breaking yield ceiling of Xian hybrids can be achieved by one or combinations of the three strategies: (1) by pyramiding favorable alleles of additive genes, (2) by eliminating or minimizing under-dominant loci, and (3) by pyramiding overdominant/dominant genes polymorphic, particularly those underlying inter-subspecific heterosis.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Conghe Zhang
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuangbing Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Guixiang Zhou
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhi Yan
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Qinyong Fei
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China.
| | - Jinjie Chen
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China.
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China.
| |
Collapse
|
8
|
Zhang B, Ma L, Wu B, Xing Y, Qiu X. Introgression Lines: Valuable Resources for Functional Genomics Research and Breeding in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:863789. [PMID: 35557720 PMCID: PMC9087921 DOI: 10.3389/fpls.2022.863789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
The narrow base of genetic diversity of modern rice varieties is mainly attributed to the overuse of the common backbone parents that leads to the lack of varied favorable alleles in the process of breeding new varieties. Introgression lines (ILs) developed by a backcross strategy combined with marker-assisted selection (MAS) are powerful prebreeding tools for broadening the genetic base of existing cultivars. They have high power for mapping quantitative trait loci (QTLs) either with major or minor effects, and are used for precisely evaluating the genetic effects of QTLs and detecting the gene-by-gene or gene-by-environment interactions due to their low genetic background noise. ILs developed from multiple donors in a fixed background can be used as an IL platform to identify the best alleles or allele combinations for breeding by design. In the present paper, we reviewed the recent achievements from ILs in rice functional genomics research and breeding, including the genetic dissection of complex traits, identification of elite alleles and background-independent and epistatic QTLs, analysis of genetic interaction, and genetic improvement of single and multiple target traits. We also discussed how to develop ILs for further identification of new elite alleles, and how to utilize IL platforms for rice genetic improvement.
Collapse
Affiliation(s)
- Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
9
|
Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. MOLECULAR PLANT 2022; 15:593-619. [PMID: 35331914 DOI: 10.1016/j.molp.2022.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Since the completion of the rice genome sequencing project in 2005, we have entered the era of rice genomics, which is still in its ascendancy. Rice genomics studies can be classified into three stages: structural genomics, functional genomics, and quantitative genomics. Structural genomics refers primarily to genome sequencing for the construction of a complete map of rice genome sequence. This is fundamental for rice genetics and molecular biology research. Functional genomics aims to decode the functions of rice genes. Quantitative genomics is large-scale sequence- and statistics-based research to define the quantitative traits and genetic features of rice populations. Rice genomics has been a transformative influence on rice biological research and contributes significantly to rice breeding, making rice a good model plant for studying crop sciences.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|