1
|
Liu S, Yang Y, Tian Q, Yang Z, Li S, Valdes PJ, Farnsworth A, Kates HR, Siniscalchi CM, Guralnick RP, Soltis DE, Soltis PS, Stull GW, Folk RA, Yi T. An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1119-1141. [PMID: 39297574 PMCID: PMC12016745 DOI: 10.1111/jipb.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 04/24/2025]
Abstract
Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization-perhaps in the form of ancient syngameons like those seen today-has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.
Collapse
Affiliation(s)
- Shui‐Yin Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Ying Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhi‐Yun Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Shu‐Feng Li
- Chinese Academy of Sciences Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
| | - Paul J. Valdes
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Alex Farnsworth
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Heather R. Kates
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Carolina M. Siniscalchi
- Mississippi State University LibrariesMississippi State UniversityMississippi State39762MississippiUSA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi State39762MississippiUSA
| | - Ting‐Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Zhao J, Li S, Huang J, Ding W, Wu M, Su T, Farnsworth A, Valdes PJ, Chen L, Xing Y, Zhou Z. Heterogeneous occurrence of evergreen broad-leaved forests in East Asia: Evidence from plant fossils. PLANT DIVERSITY 2025; 47:1-12. [PMID: 40041559 PMCID: PMC11873578 DOI: 10.1016/j.pld.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 03/06/2025]
Abstract
Evergreen broad-leaved forests (EBLFs) are widely distributed in East Asia and play a vital role in ecosystem stability. The occurrence of these forests in East Asia has been a subject of debate across various disciplines. In this study, we explored the occurrence of East Asian EBLFs from a paleobotanical perspective. By collecting plant fossils from four regions in East Asia, we have established the evolutionary history of EBLFs. Through floral similarity analysis and paleoclimatic reconstruction, we have revealed a diverse spatio-temporal pattern for the occurrence of EBLFs in East Asia. The earliest occurrence of EBLFs in southern China can be traced back to the middle Eocene, followed by southwestern China during the late Eocene-early Oligocene. Subsequently, EBLFs emerged in Japan during the early Oligocene and eventually appeared in central-eastern China around the Miocene. Paleoclimate simulation results suggest that the precipitation of wettest quarter (PWetQ, mm) exceeding 600 mm is crucial for the occurrence of EBLFs. Furthermore, the heterogeneous occurrence of EBLFs in East Asia is closely associated with the evolution of the Asian Monsoon. This study provides new insights into the occurrence of EBLFs in East Asia.
Collapse
Affiliation(s)
- Jiagang Zhao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shufeng Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jian Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wenna Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Mengxiao Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Tao Su
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - Linlin Chen
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - Yaowu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Zhekun Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|
3
|
Ling YY, Peng HW, Lian L, Erst AS, Xiang KL, Wang W. Out of and in East Asia: phylogeny, biogeography and diversification of Thalictroideae (Ranunculaceae) in the Northern Hemisphere. ANNALS OF BOTANY 2024; 134:1251-1262. [PMID: 39196797 PMCID: PMC11688531 DOI: 10.1093/aob/mcae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Understanding the biogeographical patterns and processes underlying the distribution of diversity within the Northern Hemisphere has fascinated botanists and biogeographers for over a century. However, as a well-known centre of species diversity in the Northern Hemisphere, whether East Asia acted as a source and/or a sink of plant diversity of the Northern Hemisphere remains unclear. Here, we used Thalictroideae, a subfamily widely distributed in the Northern Hemisphere with the majority of species in East Asia, to investigate the role of East Asia in shaping the biogeographical patterns of the Northern Hemisphere and to test whether East Asia acted as a museum or a cradle for herbaceous taxa. METHODS Based on six plastid and one nuclear DNA regions, we generated the most comprehensive phylogeny for Thalictroideae, including 217 taxa (~66 % species) from all ten of the currently recognized genera. Within this phylogenetic framework, we then estimated divergence times, ancestral ranges and diversification rates. KEY RESULTS The monophyletic Thalictroideae contains three major clades. All genera with more than one species are strongly supported as monophyletic except for Isopyrum, which is nested in Enemion. The most recent common ancestor of Thalictroideae occurred in East Asia in the late Eocene (~36 Mya). From the Miocene onwards, ≥46 dispersal events were inferred to be responsible for the current distribution of this subfamily. East Asian Thalictroideae lineages experienced a rapid accumulation at ~10 Mya. CONCLUSIONS The biogeographical patterns of Thalictroideae support the 'out of and in East Asia' hypothesis, i.e. East Asia is both a source and a sink of biodiversity of the Northern Hemisphere. The global cooling after the middle Miocene Climatic Optimum, combined with the exposed land bridges owing to sea-level decline, might jointly have caused the bidirectional plant exchanges between East Asia and other Northern Hemisphere regions. East Asia serves as evolutionary museums and cradles for the diversity of Thalictroideae and probably for other herbaceous lineages.
Collapse
Affiliation(s)
- Yuan-Yuan Ling
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk 630090, Russia
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Feng M, Zhang J. Niche Evolution and Conservation of a Chinese Endemic Genus Sinojackia (Styracaceae). BIOLOGY 2024; 13:1085. [PMID: 39765752 PMCID: PMC11673067 DOI: 10.3390/biology13121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Climate change and human activities are expected to have a profound impact on the distribution of species, especially for narrowly distributed species. Sinojackia is endemically distributed in China, and all species are listed under Chinese protected wild species. Here, we reconstructed the phylogeny and estimated the divergence time of Sinojackia based on whole plastomes, conducted the niche evolution, and predicted the potential habitat area of Sinojackia from the LGM to the future. Our results strongly supported the monophyly of Sinojackia based on whole plastomes. This genus originated in the middle Miocene and diversified since the late Miocene. The aridity index was the highest significant factor for its niche evolution, and the niche evolution rate increased slowly since its divergence. The precipitation of the warmest quarter was a main environmental variable affecting the distribution of Sinojackia in the LGM, while the human footprint is the main variable in the near-current era and 2081-2100. Compared to the current distribution of Sinojackia, the highly suitable distribution area contracted in the LGM, but expanded during 2081-2100. This study provides potential areas for the in situ conservation of Sinojackia.
Collapse
Affiliation(s)
| | - Jisi Zhang
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114000, China;
| |
Collapse
|
5
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
6
|
Ji HY, Ye C, Chen YQ, Li JW, Hidayat A, Miao JL, Li JH, Wu JY, Zhai JW, Lan SR, Jin XH. Phylogenomics and biogeographical diversification of Collabieae (Orchidaceae) and its implication in the reconstruction of the dynamic history of Asian evergreen broadleaved forests. Mol Phylogenet Evol 2024; 196:108084. [PMID: 38688440 DOI: 10.1016/j.ympev.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.
Collapse
Affiliation(s)
- Hong-Yu Ji
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yan-Qiong Chen
- College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jian-Wu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Arief Hidayat
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, Indonesia
| | - Jiang-Lin Miao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Jian-Yong Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), China
| | - Jun-Wen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Xiao-Hua Jin
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China.
| |
Collapse
|
7
|
Zhang Q, Yang Y, Liu B, Lu L, Sauquet H, Li D, Chen Z. Meta-analysis provides insights into the origin and evolution of East Asian evergreen broad-leaved forests. THE NEW PHYTOLOGIST 2024; 242:2369-2379. [PMID: 38186378 DOI: 10.1111/nph.19524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Evergreen broad-leaved forests (EBLFs) are dominated by a monsoon climate and form a distinct biome in East Asia with notably high biodiversity. However, the origin and evolution of East Asian EBLFs (EAEBLFs) remain elusive despite the estimation of divergence times for various representative lineages. Using 72 selected generic-level characteristic lineages, we constructed an integrated lineage accumulation rate (LAR) curve based on their crown ages. According to the crown-based LAR, the EAEBLF origin was identified at least as the early Oligocene (c. 31.8 million years ago (Ma)). The accumulation rate of the characteristic genera peaked at 25.2 and 6.4 Ma, coinciding with the two intensification periods of the Asian monsoon at the Oligocene - Miocene and the Miocene - Pliocene boundaries, respectively. Moreover, the LAR was highly correlated with precipitation in the EAEBLF region and negatively to global temperature, as revealed through time-lag cross-correlation analyses. An early Oligocene origin is suggested for EAEBLFs, bridging the gap between paleobotanical and molecular dating studies and solving conflicts among previous estimates based on individual representative lineages. The strong correlation between the crown-based LAR and the precipitation brought about by the Asian monsoon emphasizes its irreplaceable role in the origin and development of EAEBLFs.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuchang Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dezhu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
8
|
Qin SY, Zuo ZY, Xu SX, Liu J, Yang FM, Luo YH, Ye JW, Zhao Y, Rong J, Liu B, Ma PF, Li DZ. Anthropogenic disturbance driving population decline of a dominant tree in East Asia evergreen broadleaved forests over the last 11,000 years. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14180. [PMID: 37700668 DOI: 10.1111/cobi.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 09/14/2023]
Abstract
Current biodiversity loss is generally considered to have been caused by anthropogenic disturbance, but it is unclear when anthropogenic activities began to affect biodiversity loss. One hypothesis suggests it began with the Industrial Revolution, whereas others propose that anthropogenic disturbance has been associated with biodiversity decline since the early Holocene. To test these hypotheses, we examined the unique vegetation of evergreen broadleaved forests (EBLFs) in East Asia, where humans have affected landscapes since the early Holocene. We adopted a genomic approach to infer the demographic history of a dominant tree (Litsea elongata) of EBLFs. We used Holocene temperature and anthropogenic disturbance factors to calculate the correlation between these variables and the historical effective population size of L. elongata with Spearman statistics and integrated the maximum-entropy niche model to determine the impact of climate change and anthropogenic disturbance on fluctuation in its effective population size. We identified 9 well-defined geographic clades for the populations of L. elongata. Based on the estimated historical population sizes of these clades, all the populations contracted, indicating persistent population decline over the last 11,000 years. Demographic history of L. elongata and human population change, change in cropland use, and change in irrigated rice area were significantly negatively correlated, whereas climate change in the Holocene was not correlated with demographic history. Our results support the early human impact hypothesis and provide comprehensive evidence that early anthropogenic disturbance may contribute to the current biodiversity crisis in East Asia.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Shuang-Xiu Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng-Mao Yang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Wei Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Wu HY, Liu YH, He QX, Ye JW, Tian B. Differential distribution shifts in two subregions of East Asian subtropical evergreen broadleaved forests-a case of Magnoliaceae. FRONTIERS IN PLANT SCIENCE 2024; 14:1326207. [PMID: 38322424 PMCID: PMC10844446 DOI: 10.3389/fpls.2023.1326207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Aim East Asian subtropical evergreen broad-leaved forests (EBLFs) are composed of western and eastern subregions with different topographical and environmental conditions. The distribution shifts over time of plants in the two subregions are predicted to be different, but the difference has seldom been investigated. Methods Potential distributions of 53 Magnoliaceae species (22 in the western and 31 in the eastern subregion) during the last glacial maximum (LGM), present, and the 2070s were predicted using MaxEnt based on 58 environmental variables. The changes in the distribution range size and centroid over time were analyzed. Species-level potential habitats were overlaid to uncover species diversity distribution, and the distributions over time were overlaid to discover long-term refugia. Results At present, the potential distributions are significantly larger than those shown by the occurrence points. During the LGM, 20/22 species in the western subregion experienced increases in range size through downwards and southward migrations, while decreases in range size in the eastern subregion (27/31 species) were accompanied by northward and eastward migrations. In the future, range size declines and northward shifts will both be found; northwestward shifts will exist in most (20/22 species) species in the western subregion, while both northwest- and northeastward shifts will occur in the eastern subregion. The diversity hotspots experienced a slight southward shift in the past and upwards to the mountain region in the future in the western subregion; in the eastern subregion, shrinks occurred in eastern China in the past and shrinks were shown in all regions in the future. Long-term refugia-preserving diversity was found in the mountains across the entire EBLFs region. Main conclusions Significant differences in distribution shifts from past to present and similar distribution shifts from present to future are revealed in the two subregions. Species diversity in both subregions experienced no significant shifts from past to future, and Magnoliaceae plants could be preserved in mountainous regions throughout the EBLFs.
Collapse
Affiliation(s)
- Hai-Yang Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yue-Han Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Qiu-Xiang He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jun-Wei Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Bin Tian
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| |
Collapse
|
10
|
Chen Z, Zhou Z, Guo ZM, Van Do T, Sun H, Niu Y. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae). PLANT DIVERSITY 2023; 45:501-512. [PMID: 37936821 PMCID: PMC10625920 DOI: 10.1016/j.pld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 11/09/2023]
Abstract
Brandisia is a shrubby genus of about eight species distributed basically in East Asian evergreen broadleaved forests (EBLFs), with distribution centers in the karst regions of Yunnan, Guizhou, and Guangxi in southwestern China. Based on the hemiparasitic and more or less liana habits of this genus, we hypothesized that its evolution and distribution were shaped by the development of EBLFs there. To test our hypothesis, the most comprehensive phylogenies of Brandisia hitherto were constructed based on plastome and nuclear loci (nrDNA, PHYA and PHYB); then divergence time and ancestral areas were inferred using the combined nuclear loci dataset. Phylogenetic analyses reconfirmed that Brandisia is a member of Orobanchaceae, with unstable placements caused by nuclear-plastid incongruences. Within Brandisia, three major clades were well supported, corresponding to the three subgenera based on morphology. Brandisia was inferred to have originated in the early Oligocene (32.69 Mya) in the Eastern Himalayas-SW China, followed by diversification in the early Miocene (19.45 Mya) in karst EBLFs. The differentiation dates of Brandisia were consistent with the origin of keystone species of EBLFs in this region (e.g., Fagaceae, Lauraceae, Theaceae, and Magnoliaceae) and the colonization of other characteristic groups (e.g., Gesneriaceae and Mahonia). These findings indicate that the distribution and evolution of Brandisia were facilitated by the rise of the karst EBLFs in East Asia. In addition, the woody and parasitic habits, and pollination characteristics of Brandisia may also be the important factors affecting its speciation and dispersal.
Collapse
Affiliation(s)
- Zhe Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Zhuo Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Ze-Min Guo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Truong Van Do
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 10000, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 10000, Hanoi, Vietnam
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Yang Niu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| |
Collapse
|
11
|
Ling YY, Xiang KL, Peng HW, Erst AS, Lian L, Zhao L, Jabbour F, Wang W. Biogeographic diversification of Actaea (Ranunculaceae): Insights into the historical assembly of deciduous broad-leaved forests in the Northern Hemisphere. Mol Phylogenet Evol 2023:107870. [PMID: 37406952 DOI: 10.1016/j.ympev.2023.107870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The deciduous broad-leaved forests (DBLFs) cover large temperate and subtropical high-altitude regions in the Northern Hemisphere. They are home to rich biodiversity, especially to numerous endemic and relict species. However, we know little about how this vegetation in the Northern Hemisphere has developed through time. Here, we used Actaea (Ranunculaceae), an herbaceous genus almost exclusively growing in the understory of the Northern Hemisphere DBLFs, to shed light on the historical assembly of this biome in the Northern Hemisphere. We present a complete species-level phylogenetic analysis of Actaea based on five plastid and nuclear loci. Using the phylogenetic framework, we estimated divergence times, ancestral ranges, and diversification rates. Phylogenetic analyses strongly support Actaea as monophyletic. Sections Podocarpae and Oligocarpae compose a clade, sister to all other Actaea. The sister relationship between sections Chloranthae and Souliea is strongly supported. Section Dichanthera is not monophyletic unless section Cimicifuga is included. Actaea originated in East Asia, likely the Qinghai-Tibet Plateau, in the late Paleocene (c. 57 Ma), and subsequently dispersed into North America in the middle Eocene (c. 43 Ma) via the Thulean bridge. Actaea reached Europe twice, Japan twice, and Taiwan once, and all these five colonization events occurred in the late Miocene-early Pliocene, a period when sea level dropped. Actaea began to diversify at c. 43 Ma. The section-level diversification took place at c. 27-37 Ma and the species-level diversification experienced accelerations twice, which occurred at c. 15 Ma and c. 5 Ma, respectively. Our findings suggest that the Northern Hemisphere DBLFs might have risen in the middle Eocene and further diversified in the late Eocene-Oligocene, middle Miocene and early Pliocene, in association with climatic deterioration during these four periods.
Collapse
Affiliation(s)
- Yuan-Yuan Ling
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Li Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk 630090, Russia
| | - Lian Lian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris 75005, France
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zan T, He YT, Zhang M, Yonezawa T, Ma H, Zhao QM, Kuo WY, Zhang WJ, Huang CH. Phylogenomic analyses of Camellia support reticulate evolution among major clades. Mol Phylogenet Evol 2023; 182:107744. [PMID: 36842731 DOI: 10.1016/j.ympev.2023.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Camellia (Theaceae) is a morphologically highly diverse genus of flowering plants and includes many famous species with high economic value, and the phylogeny of this genus is not fully resolved. We used 95 transcriptomes from 87 Camellia species and identified 1481 low-copy genes to conduct a detailed analysis of the phylogeny of this genus according to various data-screening criteria. The results show that, very different from the two existing classification systems of Camellia, 87 species are grouped into 8 main clades and two independent species, and that all 8 clades except Clade 8 were strongly supported by almost all the coalescent or concatenated trees using different gene subsets. However, the relationships among these clades were weakly supported and different from analyses using different gene subsets; furthermore, they do not agree with the phylogeny from chloroplast genomes of Camellia. Additional analyses support reticulate evolution (probably resulting from introgression or hybridization) among some major Camellia lineages, providing explanation for extensive gene tree conflicts. Furthermore, we inferred that together with the formation of East Asian subtropical evergreen broad-leaved forests, Camellia underwent a radiative divergence of major clades at 23 ∼ 19 Ma in the late Miocene then had a subsequent species burst at 10 ∼ 5 Ma. Principal component and cluster analyses provides new insights into morphological changes underlying the evolution of Camellia and a reference to further clarify subgenus and sections of this genus. The comprehensive study here including a nuclear phylogeny and other analyses reveal the rapid evolutionary history of Camellia.
Collapse
Affiliation(s)
- Ting Zan
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yi-Tao He
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa 14 243-0034, Japan.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Qiang-Min Zhao
- Guangzhou Zongke Horticulture Development Co., Ltd., Guangzhou 511300, China.
| | - Wen-Yu Kuo
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Wen-Ju Zhang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chien-Hsun Huang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
13
|
Qin SY, Zuo ZY, Guo C, Du XY, Liu SY, Yu XQ, Xiang XG, Rong J, Liu B, Liu ZF, Ma PF, Li DZ. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol Ecol 2023; 32:2850-2868. [PMID: 36847615 DOI: 10.1111/mec.16904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
The evergreen versus deciduous leaf habit is an important functional trait for adaptation of forest trees and has been hypothesized to be related to the evolutionary processes of the component species under paleoclimatic change, and potentially reflected in the dynamic history of evergreen broadleaved forests (EBLFs) in East Asia. However, knowledge about the shift of evergreen versus deciduous leaf with the impact of paleoclimatic change using genomic data remains rare. Here, we focus on the Litsea complex (Lauraceae), a key lineage with dominant species of EBLFs, to gain insights into how evergreen versus deciduous trait shifted, providing insights into the origin and historical dynamics of EBLFs in East Asia under Cenozoic climate change. We reconstructed a robust phylogeny of the Litsea complex using genome-wide single-nucleotide variants (SNVs) with eight clades resolved. Fossil-calibrated analyses, diversification rate shifts, ancestral habit, ecological niche modelling and climate niche reconstruction were employed to estimate its origin and diversification pattern. Taking into account studies on other plant lineages dominating EBLFs of East Asia, it was revealed that the prototype of EBLFs in East Asia probably emerged in the Early Eocene (55-50 million years ago [Ma]), facilitated by the greenhouse warming. As a response to the cooling and drying climate in the Middle to Late Eocene (48-38 Ma), deciduous habits were evolved in the dominant lineages of the EBLFs in East Asia. Up to the Early Miocene (23 Ma), the prevailing of East Asian monsoon increased the extreme seasonal precipitation and accelerated the emergence of evergreen habits of the dominant lineages, and ultimately shaped the vegetation resembling that of today.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Ye JW, Tian B, Li DZ. Monsoon intensification in East Asia triggered the evolution of its flora. FRONTIERS IN PLANT SCIENCE 2022; 13:1046538. [PMID: 36507402 PMCID: PMC9733597 DOI: 10.3389/fpls.2022.1046538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION East Asia (EA), which falls within the region of the Asian monsoon that is composed of the East Asia monsoon (EAM) and the Indian monsoon (IM), is known for its high species diversity and endemism. This has been attributed to extreme physiographical heterogeneity in conjunction with climate and sea-level changes during the Pleistocene, this hypothesis has been widely proven by phylogeographic studies. Recently, dated phylogenies have indicated that the origins (stem age) of the flora occurred after the Oligocene-Miocene boundary and are related to the establishment of the EAM. METHODS Hence, this study further examined whether the strengthening of the monsoons triggered floral evolution via a meta-analysis of the tempo-spatial pattern of evolutionary radiation dates (crown ages) of 101 endemic seed plant genera. RESULTS Taxonomic diversification began during the late Eocene, whereas the accumulated number of diversifications did not significantly accelerate until the late Miocene. The distribution of the weighted mean and the average divergence times in the EAM, IM, or transitional regions all fall within the mid-late Miocene. Fossils of the Tertiary relict genera are mostly and widely distributed outside EA and only half of the earliest fossils in the EA region are not older than Miocene, while their divergence times are mostly after the late Miocene. The pattern of divergence time of monotypic and polytypic taxa suggest the climatic changes after the late Pliocene exert more influence on monotypic taxa. DISCUSSION The two key stages of floral evolution coincide with the intensifications of the EAM and IM, especially the summer monsoon which brings a humid climate. An integrated review of previous studies concerning flora, genus, and species levels further supports our suggestion that monsoon intensification in EA triggered the evolution of its flora.
Collapse
Affiliation(s)
- Jun-Wei Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Bin Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|