1
|
Feng Y, Li Z, Yang Y, Shen L, Li X, Liu X, Zhang X, Zhang J, Ren F, Wang Y, Liu C, Han G, Wang X, Kuang T, Shen JR, Wang W. Structures of PSI-FCPI from Thalassiosira pseudonana grown under high light provide evidence for convergent evolution and light-adaptive strategies in diatom FCPIs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:949-966. [PMID: 39670505 DOI: 10.1111/jipb.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.20 Å resolutions from Thalassiosira pseudonana grown under high light (HL) conditions. Among them, five FCPIs are stably associated with the PSI core, these include Lhcr3, RedCAP, Lhcq8, Lhcf10, and FCP3. The eight additional Lhcr-type FCPIs are loosely associated with the PSI core and detached under the present purification conditions. The pigments of this centric diatom showed a higher proportion of chlorophylls a, diadinoxanthins, and diatoxanthins; some of the chlorophyll as and diadinoxanthins occupy the locations of fucoxanthins found in the huge PSI-FCPI from another centric diatom Chaetoceros gracilis grown under low-light conditions. These additional chlorophyll as may form more energy transfer pathways and additional diadinoxanthins may form more energy dissipation sites relying on the diadinoxanthin-diatoxanthin cycle. These results reveal the assembly mechanism of FCPIs and corresponding light-adaptive strategies of T. pseudonana PSI-FCPI, as well as the convergent evolution of the diatom PSI-FCPI structures.
Collapse
Affiliation(s)
- Yue Feng
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Lili Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xueyang Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- Department of Chemistry and Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jinyang Zhang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ren
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Guangye Han
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuchu Wang
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Wenda Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
2
|
Zou MJ, Sun S, Wang GL, Yan YH, Ji W, Wang-Otomo ZY, Madigan MT, Yu LJ. Probing the Dual Role of Ca 2+ in the Allochromatium tepidum LH1-RC Complex by Constructing and Analyzing Ca 2+-Bound and Ca 2+-Free LH1 Complexes. Biomolecules 2025; 15:124. [PMID: 39858518 PMCID: PMC11764377 DOI: 10.3390/biom15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
The genome of the mildly thermophilic hot spring purple sulfur bacterium, Allochromatium (Alc.) tepidum, contains a multigene pufBA family that encodes a series of α- and β-polypeptides, collectively forming a heterogeneous light-harvesting 1 (LH1) complex. The Alc. tepidum LH1, therefore, offers a unique model for studying an intermediate phenotype between phototrophic thermophilic and mesophilic bacteria, particularly regarding their LH1 Qy transition and moderately enhanced thermal stability. Of the 16 α-polypeptides in the Alc. tepidum LH1, six α1 bind Ca2+ to connect with β1- or β3-polypeptides in specific Ca2+-binding sites. Here, we use the purple bacterium Rhodospirillum rubrum strain H2 as a host to express Ca2+-bound and Ca2+-free Alc. tepidum LH1-only complexes composed of α- and β-polypeptides that either contain or lack the calcium-binding motif WxxDxI; purified preparations of each complex were then used to test how Ca2+ affects their thermostability and spectral features. The cryo-EM structures of both complexes were closed circular rings consisting of 14 αβ-polypeptides. The Qy absorption maximum of Ca2+-bound LH1 (α1/β1 and α1/β3) was at 894 nm, while that of Ca2+-free (α2/β1) was at 888 nm, indicating that Ca2+ imparts a Qy transition of 6 nm. Crucially for the ecological success of Alc. tepidum, Ca2+-bound LH1 complexes were more thermostable than Ca2+-free complexes, indicating that calcium plays at least two major roles in photosynthesis by Alc. tepidum-improving photocomplex stability and modifying its spectrum.
Collapse
Affiliation(s)
- Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
| | - Shuai Sun
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hao Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Ji
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | | | - Michael T. Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Tani K, Kanno R, Nagashima KVP, Kawakami M, Hiwatashi N, Nakata K, Nagashima S, Inoue K, Takaichi S, Purba ER, Hall M, Yu LJ, Madigan MT, Mizoguchi A, Humbel BM, Kimura Y, Wang-Otomo ZY. A Native LH1-RC-HiPIP Supercomplex from an Extremophilic Phototroph. Commun Biol 2025; 8:42. [PMID: 39799244 PMCID: PMC11724841 DOI: 10.1038/s42003-024-07421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr. halophila triple-complex formed from light-harvesting (LH1), the reaction center (RC), and high-potential iron-sulfur protein (HiPIP) at 2.44 Å resolution, and (2) a HiPIP-free LH1-RC complex at 2.64 Å resolution. Differing from the LH1 in the Hlr. halophila LH1-LH2 co-complex where LH1 encircles LH2, the RC-associated LH1 complex consists of 16 (rather than 18) αβ-subunits circularly surrounding the RC. These distinct forms of LH1 indicate that the number of subunits in a Hlr. halophila LH1 complex is flexible and its size is a function of the photocomplex it encircles. Like LH1 in the LH1-LH2 co-complex, the RC-associated LH1 complex also contained two forms of αβ-polypeptides and both dimeric and monomeric molecules of bacteriochlorophyll a. The majority of the isolated Hlr. halophila LH1-RC complexes contained the electron donor HiPIP bound to the surface of the RC cytochrome subunit near the heme-1 group. The bound HiPIP consisted of an N-terminal functional domain and a long C-terminal extension firmly attached to the cytochrome subunit. Despite overall highly negative surface-charge distributions for both the cytochrome subunit and HiPIP, the interface between the two proteins was relatively uncharged and neutral, forming a pathway for electron tunneling. The structure of the Hlr. halophila LH1-RC-HiPIP complex provides insights into the mechanism of light energy acquisition coupled with a long-distance electron donating process toward the charge separation site in a multi-extremophilic phototroph.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
- Graduate School of Medicine, Mie University, Tsu, Japan.
| | - Ryo Kanno
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Mai Kawakami
- Faculty of Science, Ibaraki University, Mito, Japan
| | | | - Kazuna Nakata
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Sakiko Nagashima
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Kazuhito Inoue
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
- Department of Biochemistry and Biotechnology, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo, Japan
| | - Endang R Purba
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | | | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
- Department of Cell Biology and Neuroscience, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
4
|
Wang XP, Wang GL, Fu Y, Minamino A, Zou MJ, Ma F, Xu B, Wang-Otomo ZY, Kimura Y, Madigan MT, Overmann J, Yu LJ. Insights into the divergence of the photosynthetic LH1 complex obtained from structural analysis of the unusual photocomplexes of Roseospirillum parvum. Commun Biol 2024; 7:1658. [PMID: 39702771 DOI: 10.1038/s42003-024-07354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Purple phototrophic bacteria produce two kinds of light-harvesting complexes that function to capture and transmit solar energy: the core antenna (LH1) and the peripheral antenna (LH2). The apoproteins of these antennas, encoded respectively by the genes pufBA and pucBA within and outside the photosynthetic gene cluster, respectively, exhibit conserved amino acid sequences and structural topologies suggesting they were derived from a shared ancestor. Here we present the structures of two photosynthetic complexes from Roseospirillum (Rss.) parvum 930I: an LH1-RC complex and a variant of the LH1 complex also encoded by pufBA that we designate as LH1'. The LH1-RC complex forms a closed elliptical structure consisting of 16 pairs of αβ-polypeptides that surrounds the RC. By contrast, the LH1' complex is a closed ring structure composed of 14 pairs of αβ-polypeptides, and it shows significant similarities to LH2 complexes both spectrally and structurally. Although LH2-like, the LH1' complex is larger than any known LH2 complexes, and genomic analyses of Rss. parvum revealed the absence of pucBA, genes that encode classical LH2 complexes. Characterization of the unique Rss. parvum photocomplexes not only underscores the diversity of such structures but also sheds new light on the evolution of light-harvesting complexes from phototrophic bacteria.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Fu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Akane Minamino
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang XP, Yu B, Qi CH, Wang GL, Zou M, Zhang C, Yu LJ, Ma F. Energy Transfer and Exciton Relaxation in B880-B800-RC Complex through Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2024; 15:3619-3626. [PMID: 38530255 DOI: 10.1021/acs.jpclett.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The light-harvesting (LH) and reaction center (RC) core complex of purple bacterium Roseiflexus castenholzii, B880-B800-RC, are different from those of the typical photosynthetic unit, (B850-B800)x-B880-RC. To investigate the excitation flowing dynamics in this unique complex, two-dimensional electronic spectroscopy is employed. The obtained time constants for the exciton relaxation in B880, exciton relaxation in B800, B800 → B880 energy transfer (EET), and B880 → closed RC EET are 43 fs, 177 fs, 1.9 ps, and 205 ps, respectively. These time constants result in an overall EET efficiency similar to that of the typical photosynthetic unit. Analysis of the oscillatory signals reveals that while several vibronic coherences are involved in the exciton relaxation process, only one prominent vibronic coherence, with a frequency of 27 cm-1 and coupled to the B880 electronic transition, may contribute to the B800 → B880 EET process.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|