1
|
Liu M, He J, He G, Zhang Y, Zhang M, Wang Y, Wang K, Zhao M. Genome-wide identification analysis of the ATP-binding cassette transporter family and expression analysis under methyl jasmonate treatment in Panax ginseng. BMC PLANT BIOLOGY 2025; 25:565. [PMID: 40307704 PMCID: PMC12042425 DOI: 10.1186/s12870-025-06611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The ATP-binding cassette (ABC) transporter family is one of the largest and oldest protein families and encodes a class of transmembrane transporter proteins that transport substances in living organisms. Panax ginseng is a traditional Chinese herbal medicine, and its main active ingredient is ginsenoside, a secondary metabolite. Transportation and accumulation of secondary metabolites require the participation of ABC transporter proteins. In this study, we performed a genome-wide identification and expression analysis of the ginseng ABC transporter family using bioinformatics tools. Analysis of 106 PgABC genes showed that they were classified into seven subfamilies, among which ABCG was the most abundant subfamily. Chromosomal localization and covariance analyses showed that PgABC genes were unevenly distributed on chromosomes and that tandem repeat sequences existed. Tissue expression analyses revealed that PgABC expression was tissue-specific in ginseng. Cis-acting element analyses showed that PgABC genes responded to induction by hormones such as methyl jasmonate (MeJA). Subsequent qRT-PCR analysis of MeJA-treated ginseng adventitious roots revealed dynamic expression changes in nine PgABC genes, with PgABC14, PgABC18, and PgABC24-01 showing significant upregulation. The identification and analysis of the ABC transporter family in ginseng lays a theoretical foundation for the subsequent study of the function of the ABC gene family in ginseng and provides a theoretical basis for the study of ABC transporter proteins in other medicinal plant species.
Collapse
Affiliation(s)
- Mengna Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jianfeng He
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yu Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
2
|
Shou M, Lin Q, Xu Y, Zhu R, Shi M, Kai G. New insights of advanced biotechnological engineering strategies for tanshinone biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112384. [PMID: 39756484 DOI: 10.1016/j.plantsci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S. miltiorrhiza plants. Recently, multiple biotechnological strategies have been applied to improve tanshinone production. In this review, advances in bioactivities, biosynthesis pathway and regulation, transcriptional regulatory network, epigenetic modification and synthetic biology are summarized, and future perspectives are discussed, which will help develop high-quality S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Minyu Shou
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinzhe Lin
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Xu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Shi
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|