1
|
Sotoodeh MS, Chien SHL, Hadjikhani N. Visual attention modulates mu suppression during biological motion perception in autistic individuals. Eur J Neurosci 2024. [PMID: 39537315 DOI: 10.1111/ejn.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
There has been a lot of controversy regarding mirror neuron function in autism spectrum disorder (ASD), in particular during the observation of biological motions (BM). Here, we directly explored the link between visual attention and brain activity in terms of mu suppression, by simultaneously recording eye-tracking and EEGs during BM tasks. Nineteen autistic children (15 boys, mean age = 11.57 ± 4.28 years) and 19 age-matched neurotypical (NT) children (15 boys, mean age = 11.68 ± 5.22 years) participated in the study. Each participant's eye movement and EEG were simultaneously recorded while watching four BM stimuli (walking, cartwheeling, free-throwing and underarm throwing) and a scrambled condition. Mu (8-13 Hz) suppression index (SI) for central regions was calculated. Fixation counts and percent of fixation time were calculated as indices of eye movements. EEG results revealed significant mu suppressions in the central region in both groups for all BM actions. Eye-tracking results showed that NT children had greater fixation counts and a higher percentage of fixation time than autistic children, indicating greater overall visual attention to BM. Notably, correlational analyses for both groups further revealed that individuals' fixation time and fixation counts were negatively correlated with the mu suppression index for all actions, indicating a strong association between visual attention and mu SI in the central region. Our findings suggest a critical role of visual attention in interpreting mu suppression during action perception in autism.
Collapse
Affiliation(s)
| | - Sarina Hui-Lin Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Neuroscience and Brain Diseases, China Medical University, Taichung, Taiwan
| | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
- Gillberg Neuropsychiatry Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Smekal V, Poyo Solanas M, Fraats EIC, de Gelder B. Differential contributions of body form, motion, and temporal information to subjective action understanding in naturalistic stimuli. Front Integr Neurosci 2024; 18:1302960. [PMID: 38533314 PMCID: PMC10963482 DOI: 10.3389/fnint.2024.1302960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction We investigated the factors underlying naturalistic action recognition and understanding, as well as the errors occurring during recognition failures. Methods Participants saw full-light stimuli of ten different whole-body actions presented in three different conditions: as normal videos, as videos with the temporal order of the frames scrambled, and as single static representative frames. After each stimulus presentation participants completed one of two tasks-a forced choice task where they were given the ten potential action labels as options, or a free description task, where they could describe the action performed in each stimulus in their own words. Results While generally, a combination of form, motion, and temporal information led to the highest action understanding, for some actions form information was sufficient and adding motion and temporal information did not increase recognition accuracy. We also analyzed errors in action recognition and found primarily two different types. Discussion One type of error was on the semantic level, while the other consisted of reverting to the kinematic level of body part processing without any attribution of semantics. We elaborate on these results in the context of naturalistic action perception.
Collapse
Affiliation(s)
- Vojtěch Smekal
- Brain and Emotion Lab, Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, Maastricht, Netherlands
| | | | | | | |
Collapse
|
3
|
Moura N, Fonseca P, Goethel M, Oliveira-Silva P, Vilas-Boas JP, Serra S. The impact of visual display of human motion on observers' perception of music performance. PLoS One 2023; 18:e0281755. [PMID: 36888588 PMCID: PMC9994732 DOI: 10.1371/journal.pone.0281755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In investigating the influence of body movement in multimodal perception, human motion displays are frequently used as a means of visual standardization and control of external confounders. However, no principle is established regarding the selection of an adequate display for specific study purposes. The aim of this study was to evaluate the effects of adopting 4 visual displays (point-light, stick figure, body mass, skeleton) on the observers' perception of music performances in 2 expressive conditions (immobile, projected expressiveness). Two hundred eleven participants rated 8 audio-visual samples in expressiveness, match between movement and music, and overall evaluation. The results revealed significant isolated main effects of visual display and expressive condition on the observers' ratings (in both, p < 0.001), and interaction effects between the two factors (p < 0.001). Displays closer to a human form (mostly skeleton, sometimes body mass) exponentiated the evaluations of expressiveness and music-movement match in the projected expressiveness condition, and of overall evaluation in the immobile condition; the opposite trend occurred with the simplified motion display (stick figure). Projected expressiveness performances were higher rated than immobile performances. Although the expressive conditions remained distinguishable across displays, the more complex ones potentiated the attribution of subjective qualities. We underline the importance of considering the variable display as an influencing factor in perceptual studies.
Collapse
Affiliation(s)
- Nádia Moura
- School of Arts, Research Centre in Science and Technology of the Arts, Universidade Católica Portuguesa, Porto, Portugal
- * E-mail:
| | - Pedro Fonseca
- Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal
| | - Márcio Goethel
- Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Human Neurobehavioral Laboratory, Research Centre for Human Development, Universidade Católica Portuguesa, Porto, Portugal
| | - João Paulo Vilas-Boas
- Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - Sofia Serra
- School of Arts, Research Centre in Science and Technology of the Arts, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
4
|
Trujillo JP, Özyürek A, Kan CC, Sheftel-Simanova I, Bekkering H. Differences in functional brain organization during gesture recognition between autistic and neurotypical individuals. Soc Cogn Affect Neurosci 2022; 17:1021-1034. [PMID: 35428885 PMCID: PMC9629468 DOI: 10.1093/scan/nsac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Persons with and without autism process sensory information differently. Differences in sensory processing are directly relevant to social functioning and communicative abilities, which are known to be hampered in persons with autism. We collected functional magnetic resonance imaging data from 25 autistic individuals and 25 neurotypical individuals while they performed a silent gesture recognition task. We exploited brain network topology, a holistic quantification of how networks within the brain are organized to provide new insights into how visual communicative signals are processed in autistic and neurotypical individuals. Performing graph theoretical analysis, we calculated two network properties of the action observation network: 'local efficiency', as a measure of network segregation, and 'global efficiency', as a measure of network integration. We found that persons with autism and neurotypical persons differ in how the action observation network is organized. Persons with autism utilize a more clustered, local-processing-oriented network configuration (i.e. higher local efficiency) rather than the more integrative network organization seen in neurotypicals (i.e. higher global efficiency). These results shed new light on the complex interplay between social and sensory processing in autism.
Collapse
Affiliation(s)
- James P Trujillo
- Correspondence should be addressed to James P. Trujillo, Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, Nijmegen 6525 GD, The Netherlands. E-mail:
| | - Asli Özyürek
- Donders Institute for Brain, Cognition, and Behavior, Donders Centre for Cognition, Nijmegen, GD 6525, The Netherlands,Max Planck Institute for Psycholinguistics, Nijmegen, XD 6525, The Netherlands
| | - Cornelis C Kan
- Department of Psychiatry, Radboud University Medical Centre, Radboudumc, Nijmegen, GA 6525, The Netherlands
| | - Irina Sheftel-Simanova
- One Planet Research Centre, Radboud University Medical Centre, Radboudumc, Nijmegen, GA 6525, The Netherlands
| | - Harold Bekkering
- Donders Institute for Brain, Cognition, and Behavior, Donders Centre for Cognition, Nijmegen, GD 6525, The Netherlands
| |
Collapse
|
5
|
Trujillo JP, Özyürek A, Kan CC, Sheftel-Simanova I, Bekkering H. Differences in the production and perception of communicative kinematics in autism. Autism Res 2021; 14:2640-2653. [PMID: 34536063 PMCID: PMC9292179 DOI: 10.1002/aur.2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/14/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
In human communication, social intentions and meaning are often revealed in the way we move. In this study, we investigate the flexibility of human communication in terms of kinematic modulation in a clinical population, namely, autistic individuals. The aim of this study was twofold: to assess (a) whether communicatively relevant kinematic features of gestures differ between autistic and neurotypical individuals, and (b) if autistic individuals use communicative kinematic modulation to support gesture recognition. We tested autistic and neurotypical individuals on a silent gesture production task and a gesture comprehension task. We measured movement during the gesture production task using a Kinect motion tracking device in order to determine if autistic individuals differed from neurotypical individuals in their gesture kinematics. For the gesture comprehension task, we assessed whether autistic individuals used communicatively relevant kinematic cues to support recognition. This was done by using stick-light figures as stimuli and testing for a correlation between the kinematics of these videos and recognition performance. We found that (a) silent gestures produced by autistic and neurotypical individuals differ in communicatively relevant kinematic features, such as the number of meaningful holds between movements, and (b) while autistic individuals are overall unimpaired at recognizing gestures, they processed repetition and complexity, measured as the amount of submovements perceived, differently than neurotypicals do. These findings highlight how subtle aspects of neurotypical behavior can be experienced differently by autistic individuals. They further demonstrate the relationship between movement kinematics and social interaction in high-functioning autistic individuals. LAY SUMMARY: Hand gestures are an important part of how we communicate, and the way that we move when gesturing can influence how easy a gesture is to understand. We studied how autistic and typical individuals produce and recognize hand gestures, and how this relates to movement characteristics. We found that autistic individuals moved differently when gesturing compared to typical individuals. In addition, while autistic individuals were not worse at recognizing gestures, they differed from typical individuals in how they interpreted certain movement characteristics.
Collapse
Affiliation(s)
- James P Trujillo
- Donders Centre for Cognition, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Asli Özyürek
- Donders Centre for Cognition, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Cornelis C Kan
- Department of Psychiatry, Radboud University Medical Centre, Radboudumc, Nijmegen, The Netherlands
| | - Irina Sheftel-Simanova
- One Planet Research Centre, Radboud University Medical Centre, Radboudumc, Nijmegen, The Netherlands
| | - Harold Bekkering
- Donders Centre for Cognition, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Sotoodeh MS, Taheri-Torbati H, Hadjikhani N, Lassalle A. Preserved action recognition in children with autism spectrum disorders: Evidence from an EEG and eye-tracking study. Psychophysiology 2020; 58:e13740. [PMID: 33280150 DOI: 10.1111/psyp.13740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 01/24/2023]
Abstract
Individuals with Autism Spectrum Disorder (ASD) have difficulties recognizing and understanding others' actions. The goal of the present study was to determine whether children with and without ASD show differences in the way they process stimuli depicting Biological Motion (BM). Thirty-two children aged 7-16 (16 ASD and 16 typically developing (TD) controls) participated in two experiments. In the first experiment, electroencephalography (EEG) was used to record low (8-10 Hz) and high (10-13 Hz) mu and beta (15-25 Hz) bands during the observation three different Point Light Displays (PLD) of action. In the second experiment, participants answered to action-recognition tests and their accuracy and response time were recorded, together with their eye-movements. There were no group differences in EEG data (first experiment), indicating that children with and without ASD do not differ in their mu suppression (8-13 Hz) and beta activity (15-25 Hz). However, behavioral data from second experiment revealed that children with ASD were less accurate and slower than TD children in their responses to an action recognition task. In addition, eye-tracking data indicated that children with ASD paid less attention to the body compared to the background when watching PLD stimuli. Our results indicate that the more the participants focused on the PLDs, the more they displayed mu suppressions. These results could challenge the results of previous studies that had not controlled for visual attention and found a possible deficit in MNS functions of individuals with ASD. We discuss possible mechanisms and interpretations.
Collapse
Affiliation(s)
| | | | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.,Gillberg Neurospychiatry Center, University of Gothenburg, Gothenburg, Sweden
| | - Amandine Lassalle
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Eggebrecht AT, Dworetsky A, Hawks Z, Coalson R, Adeyemo B, Davis S, Gray D, McMichael A, Petersen SE, Constantino JN, Pruett JR. Brain function distinguishes female carriers and non-carriers of familial risk for autism. Mol Autism 2020; 11:82. [PMID: 33081838 PMCID: PMC7574590 DOI: 10.1186/s13229-020-00381-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by high population-level heritability and a three-to-one male-to-female ratio that occurs independent of sex linkage. Prior research in a mixed-sex pediatric sample identified neural signatures of familial risk elicited by passive viewing of point light motion displays, suggesting the possibility that both resilience and risk of autism might be associated with brain responses to biological motion. To confirm a relationship between these signatures and inherited risk of autism, we tested them in families enriched for genetic loading through undiagnosed (“carrier”) females. Methods Using functional magnetic resonance imaging, we examined brain responses to passive viewing of point light displays—depicting biological versus non-biological motion—in a sample of undiagnosed adult females enriched for inherited susceptibility to ASD on the basis of affectation in their respective family pedigrees. Brain responses in carrier females were compared to responses in age-, SRS-, and IQ-matched non-carrier-females—i.e., females unrelated to individuals with ASD. We conducted a hypothesis-driven analysis focused on previously published regions of interest as well as exploratory, brain-wide analyses designed to characterize more fully the rich responses to this paradigm. Results We observed robust responses to biological motion. Notwithstanding, the 12 regions implicated by prior research did not exhibit the hypothesized interaction between group (carriers vs. controls) and point light displays (biological vs. non-biological motion). Exploratory, brain-wide analyses identified this interaction in three novel regions. Post hoc analyses additionally revealed significant variations in the time course of brain activation in 20 regions spanning occipital and temporal cortex, indicating group differences in response to point light displays (irrespective of the nature of motion) for exploration in future studies. Limitations We were unable to successfully eye-track all participants, which prevented us from being able to control for potential differences in eye gaze position. Conclusions These methods confirmed pronounced neural signatures that differentiate brain responses to biological and scrambled motion. Our sample of undiagnosed females enriched for family genetic loading enabled discovery of numerous contrasts between carriers and non-carriers of risk of ASD that may index variations in visual attention and motion processing related to genetic susceptibility and inform our understanding of mechanisms incurred by inherited liability for ASD.
Collapse
Affiliation(s)
- Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA. .,Washington University School of Medicine, C.B. 8225, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
| | - Ally Dworetsky
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - Zoë Hawks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - Rebecca Coalson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - Daniel Gray
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - Alana McMichael
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO, 63110, USA
| |
Collapse
|