1
|
He Q, Wang Y, Li P, Yao C, Zhang J, Fu T, Zhang K, Yuan Q, Huang W, Wang S, Zhu P, Liu P. Accurate reconstruction algorithm for bilateral differential phase signals. RADIATION DETECTION TECHNOLOGY AND METHODS 2021. [DOI: 10.1007/s41605-021-00273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Cao Y, Zhang M, Ding H, Chen Z, Tang B, Wu T, Xiao B, Duan C, Ni S, Jiang L, Luo Z, Li C, Zhao J, Liao S, Yin X, Fu Y, Xiao T, Lu H, Hu J. Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:607-618. [PMID: 31074423 DOI: 10.1107/s1600577519003060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
There has been increasing interest in using high-resolution micro-tomography to investigate the morphology of neurovascular networks in the central nervous system, which remain difficult to characterize due to their microscopic size as well as their delicate and complex 3D structure. Synchrotron radiation X-ray imaging, which has emerged as a cutting-edge imaging technology with a high spatial resolution, provides a novel platform for the non-destructive imaging of microvasculature networks at a sub-micrometre scale. When coupled with computed tomography, this technique allows the characterization of the 3D morphology of vasculature. The current review focuses on recent progress in developing synchrotron radiation methodology and its application in probing neurovascular networks, especially the pathological changes associated with vascular abnormalities in various model systems. Furthermore, this tool represents a powerful imaging modality that improves our understanding of the complex biological interactions between vascular function and neuronal activity in both physiological and pathological states.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jinyun Zhao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Yalan Fu
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
3
|
Zdora MC, Vila-Comamala J, Schulz G, Khimchenko A, Hipp A, Cook AC, Dilg D, David C, Grünzweig C, Rau C, Thibault P, Zanette I. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue. BIOMEDICAL OPTICS EXPRESS 2017; 8:1257-1270. [PMID: 28271016 PMCID: PMC5330582 DOI: 10.1364/boe.8.001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 05/23/2023]
Abstract
The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.
Collapse
Affiliation(s)
- Marie-Christine Zdora
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT,
UK
| | - Joan Vila-Comamala
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,
Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | - Anna Khimchenko
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil,
Switzerland
| | | | - Andrew C. Cook
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | - Daniel Dilg
- University College London Institute of Cardiovascular Science, London WC1E 6BT,
UK
| | | | | | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
- School of Materials, University of Manchester, Manchester M1 7HS,
UK
- Department of Otolaryngology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611,
USA
| | - Pierre Thibault
- Department of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ,
UK
| | - Irene Zanette
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| |
Collapse
|
4
|
Brendel B, von Teuffenbach M, Noël PB, Pfeiffer F, Koehler T. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography. Med Phys 2016; 43:188. [PMID: 26745911 DOI: 10.1118/1.4938067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. METHODS We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penalty comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. RESULTS The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. CONCLUSIONS Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.
Collapse
Affiliation(s)
- Bernhard Brendel
- Research Laboratories, Philips GmbH Innovative Technologies, Hamburg D-22335, Germany
| | - Maximilian von Teuffenbach
- Lehrstuhl für Biomedizinische Physik, Physik-Department und Institut für Medizintechnik, Technische Universität München, Garching D-85748, Germany
| | - Peter B Noël
- Department of Radiology, Technische Universität München, Munich D-80333, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department und Institut für Medizintechnik, Technische Universität München, Garching D-85748, Germany and Department of Radiology, Technische Universität München, Munich D-80333, Germany
| | - Thomas Koehler
- Research Laboratories, Philips GmbH Innovative Technologies, Hamburg D-22335, Germany and Institute for Advanced Study, Technische Universität München, Garching D-85748, Germany
| |
Collapse
|
5
|
Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample. Sci Rep 2016; 6:29108. [PMID: 27357449 PMCID: PMC4928120 DOI: 10.1038/srep29108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/15/2016] [Indexed: 11/15/2022] Open
Abstract
Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases.
Collapse
|
6
|
Pan W, Shen Y, van Lenthe GH. A μCT-based investigation of the influence of tissue modulus variation, anisotropy and inhomogeneity on ultrasound propagation in trabecular bone. J Mech Behav Biomed Mater 2016; 60:416-424. [PMID: 26974585 DOI: 10.1016/j.jmbbm.2016.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/13/2016] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
Abstract
Ultrasound propagation is widely used in the diagnosis of osteoporosis by providing information on bone mechanical quality. When it loses calcium, the tissue properties will first decrease. However, limited research about the influence of tissue properties on ultrasound propagation have been done due to the cumbersome experiment. The goal of this study was to explore the relationships between tissue modulus (Es) and speed of sound (SOS) through numerical simulations, and to study the influence of Es on the acoustical behavior in characterizing the local structural anisotropy and inhomogeneity. In this work, three-dimensional finite element (FE) simulations were performed on a cubic high-resolution (15μm) bovine trabecular bone sample (4×4×4mm(3), BV/TV=0.18) mapped from micro-computed tomography. Ultrasound excitations of 50kHz, 500kHz and 2MHz were applied in three orthogonal axes and the first arriving signal (FAS) was collected to quantify wave velocity. In this study, a strong power law relationship between Es and SOS was measured with estimated exponential index β=2.08-3.44 for proximal-distal (PD), anterior-posterior (AP) and medial-lateral (ML), respectively (all R(2)>0.95). For various Es, a positive dispersion of sound speed with respect to sound frequency was observed and the velocity dispersion magnitude (VDM) was measured. Also, with Es=15GPa in three orientations, the SOS in PD axis is 2009±120m/s, faster than that of AP (1762±106m/s) and ML (1798±132m/s) (f=2MHz) directions. Besides, the standard deviation of SOS increases with the sound frequency and the Es in all directions except for that at 50kHz. For the mechanical properties, the apparent modulus with certain Es was highest in the longitudinal direction compared with the transverse directions. It indicates that the tissue modulus combining with anisotropy and inhomogeneity has great influence on ultrasound propagation. Simulation results agree well with theoretical and experimental results.
Collapse
Affiliation(s)
- Wenlei Pan
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven (University of Leuven), 3001 Leuven, Belgium; Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yi Shen
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven (University of Leuven), 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Miao H, Gomella AA, Harmon KJ, Bennett EE, Chedid N, Znati S, Panna A, Foster BA, Bhandarkar P, Wen H. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication. Sci Rep 2015; 5:13581. [PMID: 26315891 PMCID: PMC4551996 DOI: 10.1038/srep13581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/30/2015] [Indexed: 11/09/2022] Open
Abstract
X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography.
Collapse
Affiliation(s)
- Houxun Miao
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrew A Gomella
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katherine J Harmon
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Eric E Bennett
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas Chedid
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sami Znati
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alireza Panna
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Barbara A Foster
- Breast Imaging Center, Walter Reed National Military Medical Center, Bethesda, MD 20889
| | - Priya Bhandarkar
- Breast Imaging Center, Walter Reed National Military Medical Center, Bethesda, MD 20889
| | - Han Wen
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Mohajerani P, Hipp A, Willner M, Marschner M, Trajkovic-Arsic M, Ma X, Burton NC, Klemm U, Radrich K, Ermolayev V, Tzoumas S, Siveke JT, Bech M, Pfeiffer F, Ntziachristos V. FMT-PCCT: hybrid fluorescence molecular tomography-x-ray phase-contrast CT imaging of mouse models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1434-46. [PMID: 24686244 DOI: 10.1109/tmi.2014.2313405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The implementation of hybrid fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) has been shown to be a necessary development, not only for combining anatomical with functional and molecular contrast, but also for generating optical images of high accuracy. FMT affords highly sensitive 3-D imaging of fluorescence bio-distribution, but in stand-alone form it offers images of low resolution. It was shown that FMT accuracy significantly improves by considering anatomical priors from CT. Conversely, CT generally suffers from low soft tissue contrast. Therefore utilization of CT data as prior information in FMT inversion is challenging when different internal organs are not clearly differentiated. Instead, we combined herein FMT with emerging X-ray phase-contrast CT (PCCT). PCCT relies on phase shift differences in tissue to achieve soft tissue contrast superior to conventional CT. We demonstrate for the first time FMT-PCCT imaging of different animal models, where FMT and PCCT scans were performed in vivo and ex vivo, respectively. The results show that FMT-PCCT expands the potential of FMT in imaging lesions with otherwise low or no CT contrast, while retaining the cost benefits of CT and simplicity of hybrid device realizations. The results point to the most accurate FMT performance to date.
Collapse
|