1
|
Sommer L, Chemnitz T, Alberdi Hidalgo A, Wilkens JJ. Boron neutron capture enhancement study for radiation therapy with fast fission neutrons. Appl Radiat Isot 2025; 224:111873. [PMID: 40373641 DOI: 10.1016/j.apradiso.2025.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
While the number of centers offering fast neutron therapy (FNT) for cancer treatment has declined, boron neutron capture therapy (BNCT) experiences a revival. In contrast to the remaining FNT facilities actively treating patients using accelerator-based fast neutron sources, the fission neutron therapy facility MEDAPP at the research reactor FRM II in Garching was used in the past for patient treatment with fast fission neutrons. In the presented paper, we investigate the enhancement of the dose deposition by boron neutron capture reactions in fission-based fast neutron therapy driven by the motivation to explore the feasibility of an advanced treatment option. Here, the main focus is on the investigation of the combination of the fission neutron spectrum used for radiotherapy in the past with the B-10 concentration that are required for BNCT. In addition, a higher B-10 concentration and a modified neutron spectrum with a high thermal component are investigated. Including a higher B-10 concentration is driven by the ongoing research in the development of B-10 delivery agents. The study was performed using Monte Carlo simulations to calculate the dose rates in a water phantom and B-10 enriched regions of interest in different locations close to the surface of the water phantom. The influence of the B-10 concentration on the dose rate was less than 3% for all locations of the enriched regions for the combination of the clinical FNT spectrum and the clinical B-10 concentration. The dose rate is highly increased by the thermal component of the neutron input spectrum. While the dose rate enhancement is low for the combination of clinically available FNT and BNCT treatment scenarios, a potential biological selectivity of the neutron capture reactions is not represented in the physical dose rate. Further evaluation of the latter scenario and the exploitation of the thermal component within the modified spectrum appears promising.
Collapse
Affiliation(s)
- Lucas Sommer
- Technical University of Munich (TUM), Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, Garching, 85748, Germany.
| | - Tobias Chemnitz
- Technical University of Munich (TUM), Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, Garching, 85748, Germany
| | - Andrea Alberdi Hidalgo
- Technical University of Munich (TUM), Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, Garching, 85748, Germany; Technical University of Munich (TUM), TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, Garching, 85748, Germany
| | - Jan J Wilkens
- Technical University of Munich (TUM), TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, Garching, 85748, Germany; Technical University of Munich (TUM), TUM School of Medicine and Health and Klinikum rechts der Isar, Department of Radiation Oncology, Ismaninger Str. 22, Munich, 81675, Germany
| |
Collapse
|
2
|
Galuzzi L, Parisi G, Pascali V, Niklas M, Bortot D, Protti N, Altieri S. Fluorescent Neutron Track Detectors for Boron-10 Microdistribution Measurement in BNCT: A Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2025; 18:621. [PMID: 39942287 PMCID: PMC11818730 DOI: 10.3390/ma18030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
Boron Neutron-Capture Therapy (BNCT) is a form of radiation therapy that relies on the highly localized and enhanced biological effects of the 10B neutron capture (BNC) reaction products to selectively kill cancer cells. The efficacy of BNCT is, therefore, strongly dependent on the 10B spatial microdistribution at a subcellular level. Fluorescent Nuclear Track Detectors (FNTDs) could be a promising technology for measuring 10B microdistribution. They allow the measurement of the tracks of charged particles, and their biocompatibility allows cell samples to be deposited and grown on their surfaces. If a layer of borated cells is deposited and irradiated by a neutron field, the energy deposited by the BNC products and their trajectories can be measured by analyzing the corresponding tracks. This allows the reconstruction of the position where the measured particles were generated, hence the microdistribution of 10B. With respect to other techniques developed to measure 10B microdistribution, FNTDs would be a non-destructive, biocompatible, relatively easy-to-use, and accessible method, allowing the simultaneous measurement of the 10B microdistribution, the LET of particles, and the evolution of the related biological response on the very same cell sample. An FNTD was tested in three irradiation conditions to study the feasibility of FNTDs for BNCT applications. The FNTD allowed the successful measurement of the correct alpha particle range and mean penetration depth expected for all the radiation fields employed. This work proved the feasibility of FNTD in reconstructing the tracks of the alpha particles produced in typical BNCT conditions, thus the 10B microdistribution. Further experiments are planned at the University of Pavia's LENA (Applied Nuclear Energy Laboratory) to test the final set-up coupling the FNTD with borated cell samples.
Collapse
Affiliation(s)
- Laura Galuzzi
- Department of Energy, Politecnico di Milano, 20156 Milan, Italy; (L.G.); (D.B.)
| | - Gabriele Parisi
- Department of Physics, University of Pavia, 27100 Pavia, Italy; (V.P.); (N.P.); (S.A.)
- INFN—Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
| | - Valeria Pascali
- Department of Physics, University of Pavia, 27100 Pavia, Italy; (V.P.); (N.P.); (S.A.)
- INFN—Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
| | - Martin Niklas
- Division of Radiology and Division of Medical Physics in Radiation Oncology, DKFZ—Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany;
| | - Davide Bortot
- Department of Energy, Politecnico di Milano, 20156 Milan, Italy; (L.G.); (D.B.)
| | - Nicoletta Protti
- Department of Physics, University of Pavia, 27100 Pavia, Italy; (V.P.); (N.P.); (S.A.)
- INFN—Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
| | - Saverio Altieri
- Department of Physics, University of Pavia, 27100 Pavia, Italy; (V.P.); (N.P.); (S.A.)
| |
Collapse
|
3
|
Järvinen J, Pulkkinen H, Rautio J, Timonen JM. Amino Acid-Based Boron Carriers in Boron Neutron Capture Therapy (BNCT). Pharmaceutics 2023; 15:2663. [PMID: 38140004 PMCID: PMC10748186 DOI: 10.3390/pharmaceutics15122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Interest in the design of boronated amino acids has emerged, partly due to the utilization of boronophenylalanine (BPA), one of the two agents employed in clinical Boron Neutron Capture Therapy (BNCT). The boronated amino acids synthesized thus far for BNCT investigations can be classified into two categories based on the source of boron: boronic acids or carboranes. Amino acid-based boron carriers, employed in the context of BNCT treatment, demonstrate significant potential in the treatment of challenging tumors, such as those located in the brain. This review aims to shed light on the developmental journey and challenges encountered over the years in the field of amino acid-based boron delivery compound development. The primary focus centers on the utilization of the large amino acid transporter 1 (LAT1) as a target for boron carriers in BNCT. The development of efficient carriers remains a critical objective, addressing challenges related to tumor specificity, effective boron delivery, and rapid clearance from normal tissue and blood. LAT1 presents an intriguing and promising target for boron delivery, given its numerous characteristics that make it well suited for drug delivery into tumor tissues, particularly in the case of brain tumors.
Collapse
Affiliation(s)
- Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Herkko Pulkkinen
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juri M. Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Balcer E, Giebułtowicz J, Sochacka M, Ruszczyńska A, Muszyńska M, Bulska E. Investigation of the Impact of L-Phenylalanine and L-Tyrosine Pre-Treatment on the Uptake of 4-Borono-L-Phenylalanine in Cancerous and Normal Cells Using an Analytical Approach Based on SC-ICP-MS. Molecules 2023; 28:6552. [PMID: 37764328 PMCID: PMC10534874 DOI: 10.3390/molecules28186552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Boron has gained significant attention in medical research due to its B-10 isotope's high cross section for the reaction with thermal neutrons, generating ionizing particles that can eliminate cancer cells, propelling the development of boron neutron capture therapy (BNCT) for cancer treatment. The compound 4-borono-L-phenylalanine (BPA) has exhibited potential in BNCT clinical trials. Enhancing BPA uptake in cells involves proposing L-amino acid preloading. This study introduces a novel analytical strategy utilizing ICP-MS and single cell ICP-MS (SC-ICP-MS) to assess the effectiveness of L-tyrosine and L-phenylalanine preloading on human non-small cell lung carcinoma (A549) and normal Chinese hamster lung fibroblast (V79-4) models, an unexplored context. ICP-MS outcomes indicated that L-tyrosine and L-phenylalanine pre-treatment increased BPA uptake in V79-4 cells by 2.04 ± 0.74-fold (p = 0.000066) and 1.46 ± 0.06-fold (p = 0.000016), respectively. Conversely, A549 cells manifested heightened BPA uptake solely with L-tyrosine preloading, with a factor of 1.24 ± 0.47 (p = 0.028). BPA uptake remained higher in A549 compared to V79-4 regardless of preloading. SC-ICP-MS measurements showcased noteworthy boron content heterogeneity within A549 cells, signifying diverse responses to BPA exposure, including a subset with notably high BPA uptake. This study underscores SC-ICP-MS's utility in precise cellular boron quantification, validating cellular BPA uptake's heterogeneity.
Collapse
Affiliation(s)
- Emilia Balcer
- Radiochemistry Team, Reactor Research Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, Sołtana 7, Świerk, 05-400 Otwock, Poland;
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Małgorzata Sochacka
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.R.); (M.M.); (E.B.)
| | - Magdalena Muszyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.R.); (M.M.); (E.B.)
- Pro-Environment Polska Sp. z o.o., Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.R.); (M.M.); (E.B.)
| |
Collapse
|
5
|
Espector N, Portu AM, Espain MS, Leyva G, Saint Martin G. Measurement of an evaporation coefficient in tissue sections as a correction factor for 10B determination. Histochem Cell Biol 2023:10.1007/s00418-023-02200-w. [PMID: 37126141 DOI: 10.1007/s00418-023-02200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment option that combines preferential uptake of a boron compound in tumors and irradiation with thermal neutrons. For treatment planning, the boron concentration in different tissues must be considered. Neutron autoradiography using nuclear track detectors (NTD) can be applied to study both the concentration and microdistribution of boron in tissue samples. Histological sections are obtained from frozen tissue by cryosectioning. When the samples reach room temperature, they undergo an evaporation process, which leads to an increase in the boron concentration. To take this effect into account, certain correction factors (evaporation coefficients, CEv) must be applied. With this aim, a protocol was established to register and analyze mass variation of tissue sections, measured with a semimicro scale. Values of ambient temperature, pressure, and humidity were simultaneously recorded. Reproducible results of evaporation curves and CEv values were obtained for different tissue samples, which allowed the systematization of the procedure. This study could contribute to a more precise determination of boron concentration in tissue samples through the neutron autoradiography technique, which is of great relevance to make dosimetric calculations in BNCT.
Collapse
Affiliation(s)
- Natalia Espector
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| | - Agustina Mariana Portu
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina.
- Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina.
| | - María Sol Espain
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
- Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina
| | - Gabriela Leyva
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| | - Gisela Saint Martin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Kusaka S, Miyake Y, Tokumaru Y, Morizane Y, Tamaki S, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation in BNCT of Brain-Tumor-Model Rats-Ex Vivo Imaging of BPA Using MALDI Mass Spectrometry Imaging. Life (Basel) 2022; 12:1786. [PMID: 36362940 PMCID: PMC9695333 DOI: 10.3390/life12111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
The blood-brain barrier (BBB) is likely to be intact during the early stages of brain metastatic melanoma development, and thereby inhibits sufficient drug delivery into the metastatic lesions. Our laboratory has been developing a system for boron drug delivery to brain cells via cerebrospinal fluid (CSF) as a viable pathway to circumvent the BBB in boron neutron capture therapy (BNCT). BNCT is a cell-selective cancer treatment based on the use of boron-containing drugs and neutron irradiation. Selective tumor targeting by boron with minimal normal tissue toxicity is required for effective BNCT. Boronophenylalanine (BPA) is widely used as a boron drug for BNCT. In our previous study, we demonstrated that application of the CSF administration method results in high BPA accumulation in the brain tumor even with a low dose of BPA. In this study, we evaluate BPA biodistribution in the brain following application of the CSF method in brain-tumor-model rats (melanoma) utilizing matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We observed increased BPA penetration to the tumor tissue, where the color contrast on mass images indicates the border of BPA accumulation between tumor and normal cells. Our approach could be useful as drug delivery to different types of brain tumor, including brain metastases of melanoma.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yugo Tokumaru
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yuri Morizane
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yoko Akiyama
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Fuminobu Sato
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| |
Collapse
|
7
|
Cheng X, Li F, Liang L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Curr Oncol 2022; 29:7868-7886. [PMID: 36290899 PMCID: PMC9601095 DOI: 10.3390/curroncol29100622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary modality that is used to treat a variety of malignancies, using neutrons to irradiate boron-10 (10B) nuclei that have entered tumor cells to produce highly linear energy transfer (LET) alpha particles and recoil 7Li nuclei (10B [n, α] 7Li). Therefore, the most important part in BNCT is to selectively deliver a large number of 10B to tumor cells and only a small amount to normal tissue. So far, BNCT has been used in more than 2000 cases worldwide, and the efficacy of BNCT in the treatment of head and neck cancer, malignant meningioma, melanoma and hepatocellular carcinoma has been confirmed. We collected and collated clinical studies of second-generation boron delivery agents. The combination of different drugs, the mode of administration, and the combination of multiple treatments have an important impact on patient survival. We summarized the critical issues that must be addressed, with the hope that the next generation of boron delivery agents will overcome these challenges.
Collapse
Affiliation(s)
- Xiang Cheng
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
| | - Fanfan Li
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| | - Lizhen Liang
- Hefei Comprehensive National Science Center, Institute of Energy, Building 9, Binhu Excellence City Phase I, 16 Huayuan Avenue, Baohe District, Hefei 230031, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| |
Collapse
|
8
|
Clinical Viability of Boron Neutron Capture Therapy for Personalized Radiation Treatment. Cancers (Basel) 2022; 14:cancers14122865. [PMID: 35740531 PMCID: PMC9221296 DOI: 10.3390/cancers14122865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Usually, for dose planning in radiotherapy, the tumor is delimited as a volume on the image of the patient together with other clinical considerations based on populational evidence. However, the same prescription dose can provide different results, depending on the patient. Unfortunately, the biological aspects of the tumor are hardly considered in dose planning. Boron Neutron Capture Radiotherapy enables targeted treatment by incorporating boron-10 at the cellular level and irradiating with neutrons of a certain energy so that they produce nuclear reactions locally and almost exclusively damage the tumor cell. This technique is not new, but modern neutron generators and more efficient boron carriers have reactivated the clinical interest of this technique in the pursuit of more precise treatments. In this work, we review the latest technological facilities and future possibilities for the clinical implementation of BNCT and for turning it into a personalized therapy. Abstract Boron Neutron Capture Therapy (BNCT) is a promising binary disease-targeted therapy, as neutrons preferentially kill cells labeled with boron (10B), which makes it a precision medicine treatment modality that provides a therapeutic effect exclusively on patient-specific tumor spread. Contrary to what is usual in radiotherapy, BNCT proposes cell-tailored treatment planning rather than to the tumor mass. The success of BNCT depends mainly on the sufficient spatial biodistribution of 10B located around or within neoplastic cells to produce a high-dose gradient between the tumor and healthy tissue. However, it is not yet possible to precisely determine the concentration of 10B in a specific tissue in real-time using non-invasive methods. Critical issues remain to be resolved if BNCT is to become a valuable, minimally invasive, and efficient treatment. In addition, functional imaging technologies, such as PET, can be applied to determine biological information that can be used for the combined-modality radiotherapy protocol for each specific patient. Regardless, not only imaging methods but also proteomics and gene expression methods will facilitate BNCT becoming a modality of personalized medicine. This work provides an overview of the fundamental principles, recent advances, and future directions of BNCT as cell-targeted cancer therapy for personalized radiation treatment.
Collapse
|
9
|
Bernstock JD, Gary SE, Klinger N, Valdes PA, Ibn Essayed W, Olsen HE, Chagoya G, Elsayed G, Yamashita D, Schuss P, Gessler FA, Peruzzi PP, Bag A, Friedman GK. Standard clinical approaches and emerging modalities for glioblastoma imaging. Neurooncol Adv 2022; 4:vdac080. [PMID: 35821676 PMCID: PMC9268747 DOI: 10.1093/noajnl/vdac080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis. In addition, traditional MRI imaging can be further confounded by treatment-related effects such as pseudoprogression, radiation necrosis, and/or pseudoresponse(s) that preclude clinicians from making fully informed decisions when structuring a therapeutic approach. A myriad of novel imaging modalities have been developed to address these deficits. Herein, we provide a clinically oriented review of standard techniques for imaging GBM and highlight emerging technologies utilized in disease characterization and therapeutic development.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Sam E Gary
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Neil Klinger
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Hannah E Olsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Patrick Schuss
- Department of Neurosurgery, Unfallkrankenhaus Berlin , Berlin, Germany
| | | | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital , Memphis, TN USA
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham , AL, USA
| |
Collapse
|
10
|
Dai Q, Yang Q, Bao X, Chen J, Han M, Wei Q. The Development of Boron Analysis and Imaging in Boron Neutron Capture Therapy (BNCT). Mol Pharm 2022; 19:363-377. [PMID: 35040321 DOI: 10.1021/acs.molpharmaceut.1c00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a selective biological targeted nuclide technique for cancer therapy. It has the following attractive features: good targeting, high effectiveness, and causes slight damage to surrounding healthy tissue compared with other traditional methods. It has been considered as one of the promising methods for the treatment of various cancers. Measuring 10B concentrations is vital for BNCT. However, the existing technology and equipment cannot satisfy the real-time and accurate measurement requirements, and more efficient methods are in demand. The development of methods and imaging applied in BNCT to help measure boron concentration is described in this review.
Collapse
Affiliation(s)
- Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - QiYao Yang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
11
|
Miyake Y, Kusaka S, Murata I, Toyoda M. Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging of L-4-Phenylalanineboronic Acid (BPA) in a Brain Tumor Model Rat for Boron Neutron Capture Therapy (BNCT). Mass Spectrom (Tokyo) 2022; 11:A0105. [PMID: 36713803 PMCID: PMC9853116 DOI: 10.5702/massspectrometry.a0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a cell-selective particle therapy for cancer using boron containing drugs. Boron compounds are accumulated in high concentration of tens ppm level of boron in target tumors to cause lethal damage to tumor tissue. The examination of boron distribution in target tumor and normal tissue is important to evaluate the efficiency of therapy. The matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a powerful tool to visualize the distribution of target analyte in biological samples. In this manuscript, we report a trial to visualize the distribution of a typical BNCT drug, L-4-phenylalanine boronic acid (BPA) in a brain tumor model rat using MALDI-MSI technique. We performed a MALDI-MSI with high mass resolution targeting to [BPA+H]+ at m/z 210 in a BPA-treated rat brain section using a spiral orbit-type time of flight (SpiralTOF) mass spectrometer. Several BPA ion species, [BPA+H]+, [BPA-H2O+Na]+, [BPA+DHB-2H2O+Na]+ and [BPA+DHB-2H2O+K]+ were detected separate from peaks originated from biomolecules or matrix reagent by achieving the mass resolving power of approximately 20,000 (full width at half maximum; FWHM) at m/z 210. The mass images with 60 μm spatial resolution obtained from these BPA ion species in a mass window of 0.02 Da revealed their localization in the tumor region. Additionally, the mass image obtained from [BPA+H]+ also likely showed the distribution of BPA inside the tumor. MALDI-MSI with high mass resolution targeting to [BPA+H]+ has a great potential to visualize the distribution of BPA in brain tissue with tumor.
Collapse
Affiliation(s)
- Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,Correspondence to: Yumi Miyake, Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan, e-mail:
| | - Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, aoka 2–1, Suita, Osaka 565–0871, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, aoka 2–1, Suita, Osaka 565–0871, Japan
| | - Michisato Toyoda
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,MS open innovation project in JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| |
Collapse
|
12
|
Cao J, Lian G, Qi X, Jin G. Design synthesis and photophysical properties of a novel antitumor fluorescence agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Effect of HAF carbon black on curing, mechanical, thermal and neutron shielding properties of natural rubber - Low-density polyethylene composites. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhu Y, Cai J, Hosmane NS, Suzuki M, Uno K, Zhang Y, Takagaki M. Carboxyboranylamino ethanol: unprecedented discovery of boron agents for neutron capture therapy in cancer treatment. Chem Commun (Camb) 2021; 57:10174-10177. [PMID: 34528644 DOI: 10.1039/d1cc03034e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carboxyboranylamino ethanol (Me2N(BH2CO2H)CH2CH2OH, 1) was prepared in 75.0% yield by an amine-exchange reaction. Compound 1 shows lower cytotoxicity and higher anti-tumor efficacy in vitro towards the SCCVII cell line in comparison with 4-borono-L-phenylalanine (BPA) and methyl 2-hydroxyl-5-(1'-ortho-carbonylmethyl-1',2',3'-triazol-4'-yl)-benzonate (2). The bio-enhancement is interpreted using molecular docking calculations.
Collapse
Affiliation(s)
- Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China.
| | - Jianghong Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA.
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Kazuko Uno
- Louis Pasteur Centre for Medical Research, 103-5 Nakamonzen-machi, Sakyo-ku, Kyoto 606-8225, Japan
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China.
| | - Mao Takagaki
- Louis Pasteur Centre for Medical Research, 103-5 Nakamonzen-machi, Sakyo-ku, Kyoto 606-8225, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 604-8232, Japan
| |
Collapse
|
15
|
Theranostics in Boron Neutron Capture Therapy. Life (Basel) 2021; 11:life11040330. [PMID: 33920126 PMCID: PMC8070338 DOI: 10.3390/life11040330] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually: 10B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of 10B in the tumor but also on the organs at risk. It is not yet possible to determine the 10B concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the 10B concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake of 10B from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine the 10B concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach.
Collapse
|
16
|
Colocalization of tracks from boron neutron capture reactions and images of isolated cells. Appl Radiat Isot 2020; 167:109353. [PMID: 33039761 DOI: 10.1016/j.apradiso.2020.109353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 01/31/2023]
Abstract
In Boron Neutron Capture Therapy, the boronated drug plays a leading role in delivering a lethal dose to the tumour. The effectiveness depends on the boron macroscopic concentration and on its distribution at sub-cellular level. This work shows a way to colocalize alpha particles and lithium ions tracks with cells. A neutron autoradiography technique is used, which combines images of cells with images of tracks produced in a solid-state nuclear track detector.
Collapse
|
17
|
Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond) 2020; 40:406-421. [PMID: 32805063 PMCID: PMC7494062 DOI: 10.1002/cac2.12089] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy (BNCT). We analyzed the current status and future directions of BNCT for cancer treatment, as well as the main issues related to its introduction. This review highlights the principles of BNCT and the key milestones in its development: new boron delivery drugs and different types of charged particle accelerators are described; several important aspects of BNCT implementation are discussed. BCNT could be used alone or in combination with chemotherapy and radiotherapy, and it is evaluated in light of the outlined issues. For the speedy implementation of BCNT in medical practice, it is necessary to develop more selective boron delivery agents and to generate an epithermal neutron beam with definite characteristics. Pharmacological companies and research laboratories should have access to accelerators for large-scale screening of new, more specific boron delivery agents.
Collapse
Affiliation(s)
- Mayya Alexandrovna Dymova
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Sergey Yurjevich Taskaev
- Budker Institute of Nuclear PhysicsSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 11Novosibirsk630090Russia
- Laboratory of Boron Neutron Capture TherapyNovosibirsk State UniversityPirogova str. 1Novosibirsk630090Russia
| | - Vladimir Alexandrovich Richter
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Elena Vladimirovna Kuligina
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| |
Collapse
|
18
|
Nakai K, Endo K, Yoshida F, Koka M, Yamada N, Satoh T, Tsurubuchi T, Matsumura A, Matsumoto Y, Sakurai H. Boron analysis and imaging of cells with 2-hr BPA exposure by using micro-proton particle-induced gamma-ray emission (PIGE). Appl Radiat Isot 2020; 165:109334. [PMID: 32739796 DOI: 10.1016/j.apradiso.2020.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Particle-induced gamma-ray emission (PIGE), which measures prompt gamma rays at 428 keV from 10B (p, p'γ) 7Be, was used to confirm the boron distribution within 2hr-BPA-exposed cells. Distribution images of potassium, phosphate, and boron and the whole spectrum showed the ratios of boron counts to total (%) as follows: control group: 1.35 ± 0.073%; 2hr boron exposure group: 2.33 ± 0.35%; and boron exposure/wash group: 1.58 ± 0.095%. Micro-beam PIXE/PIGE can be a promising tool for visualization of intracellular Boron.
Collapse
Affiliation(s)
- Kei Nakai
- Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki, 300-0331, Japan; Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Keita Endo
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fumiyo Yoshida
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Koka
- Takasaki Advanced Radiation Research Institute, National Institute for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Naoto Yamada
- Takasaki Advanced Radiation Research Institute, National Institute for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Takahiro Satoh
- Takasaki Advanced Radiation Research Institute, National Institute for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
19
|
Aldossari S, McMahon G, Lockyer NP, Moore KL. Microdistribution and quantification of the boron neutron capture therapy drug BPA in primary cell cultures of human glioblastoma tumour by NanoSIMS. Analyst 2019; 144:6214-6224. [PMID: 31528921 DOI: 10.1039/c9an01336a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of secondary ion mass spectrometry (SIMS) to provide high sensitivity imaging of elements and small-medium mass molecules in biological tissues and cells, makes it a very powerful tool for drug distribution studies. Here we report on the application of a high-resolution dynamic SIMS instrument for the quantification and localisation of therapeutic levels of the BNCT agent l-para-(dihydroxyboryl)-phenylalanine (BPA) in primary cell cultures from human patients exhibiting glioblastoma multiform tumours. Boron uptake and distribution was determined quantitatively as a function of cell-sampling location and different treatment regimes. Importantly, BPA was found to accumulate in cancer cells invading the 'brain around tumour' tissue in addition to the main tumour site. Pre-treatment of samples with l-tyrosine was found not to increase the uptake of BPA, nor change the intracellular drug distribution. In cultured cells from the tumour core and brain around tumour, with and without l-tyrosine pre-treatment, normalised boron-related signals were higher from cell nuclei than from cytoplasm. An efflux treatment was found to reduce BPA levels, but at a rate slower than the original uptake, and did not affect the intracellular drug distribution. To the best of our knowledge, these data represent the first published study of BPA uptake and l-amino acid pre-treatment in cultured primary human cells using dynamic SIMS, and the most detailed, subcellular distribution study of a BNCT agent in any cellular system.
Collapse
Affiliation(s)
- Samar Aldossari
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
20
|
Barré FY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Anal Chem 2019; 91:10840-10848. [PMID: 31355633 PMCID: PMC6706868 DOI: 10.1021/acs.analchem.9b02495] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.
Collapse
Affiliation(s)
- Florian
P. Y. Barré
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Martin R. L. Paine
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bryn Flinders
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Adam J. Trevitt
- School
of Chemistry, University of Wollongong, Wollongong, Australia
| | - Patrick D. Kelly
- School
of Chemistry, University of Wollongong, Wollongong, Australia
| | | | - João P. Garcia
- University
Medical Centre (UMC) Utrecht, Department
of Orthopedics, Heidelberglaan
100, 3584 CX Utrecht, The Netherlands
| | - Laura B. Creemers
- University
Medical Centre (UMC) Utrecht, Department
of Orthopedics, Heidelberglaan
100, 3584 CX Utrecht, The Netherlands
| | | | - Rob J. Vreeken
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Discovery
Sciences, Janssen Research and Development, Beerse, Belgium
| | - Berta Cillero-Pastor
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
21
|
Nar I, Bortolussi S, Postuma I, Atsay A, Berksun E, Viola E, Ferrari C, Cansolino L, Ricciardi G, Donzello MP, Hamuryudan E. A Phthalocyanine‐
ortho
‐Carborane Conjugate for Boron Neutron Capture Therapy: Synthesis, Physicochemical Properties, and in vitro Tests. Chempluschem 2019; 84:345-351. [DOI: 10.1002/cplu.201800560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Ilgın Nar
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Silva Bortolussi
- Dipartimento di FisicaUniversità of Pavia Via Bassi 6 27100 Pavia Italy
- Istituto Nazionale Di Fisica Nucleare (INFN)Unit of Pavia Italy
| | - Ian Postuma
- Dipartimento di FisicaUniversità of Pavia Via Bassi 6 27100 Pavia Italy
| | - Armağan Atsay
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Ekin Berksun
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Elisa Viola
- Dipartimento di ChimicaUniversità di Roma Sapienza Piazzale A. Moro 5 I-00185 Roma Italy
| | - Cinzia Ferrari
- Dipartimento di Scienze Clinico-ChirurgicheLaboratorio di Chirurgia SperimentaleUniversità di Pavia Via Ferrata 9 27100 Pavia Italy
| | - Laura Cansolino
- Dipartimento di Scienze Clinico-ChirurgicheLaboratorio di Chirurgia SperimentaleUniversità di Pavia Via Ferrata 9 27100 Pavia Italy
| | - Giampaolo Ricciardi
- Scuola di Scienze Agrarie, Alimentari, Forestali e Ambientali (SAFE)Università della Basilicata Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Maria Pia Donzello
- Dipartimento di ChimicaUniversità di Roma Sapienza Piazzale A. Moro 5 I-00185 Roma Italy
| | - Esin Hamuryudan
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| |
Collapse
|
22
|
Yinghuai Z, Lin X, Xie H, Li J, Hosmane NS, Zhang Y. The Current Status and Perspectives of Delivery Strategy for Boron-based Drugs. Curr Med Chem 2018; 26:5019-5035. [PMID: 30182851 DOI: 10.2174/0929867325666180904105212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
Boron-containing compounds are essential micronutrients for animals and plants despite their low-level natural occurrence. They can strengthen the cell walls of the plants and they play important role in supporting bone health. However, surprisingly, boron-containing compounds are seldom found in pharmaceutical drugs. In fact, there are no inherent disadvantages reported so far in terms of the incorporation of boron into medicines. Indeed, drugs based on boron-containing compounds, such as tavaborole (marked name Kerydin) and bortezomib (trade name Velcade) have been investigated and they are used in clinical treatment. In addition, following the advanced development of boron neutron capture therapy and a new emerging proton boron fusion therapy, more boron-containing medicinals are to be expected. This review discusses the current status and perspectives of delivery strategy for boron-containing drugs.
Collapse
Affiliation(s)
- Zhu Yinghuai
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau. Macao
| | - Xinglong Lin
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Hongming Xie
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Jianlin Li
- HEC Research and Development Center, Dongguan 523871. China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115-2862. United States
| | - Yingjun Zhang
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| |
Collapse
|
23
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
24
|
Futamura G, Kawabata S, Nonoguchi N, Hiramatsu R, Toho T, Tanaka H, Masunaga SI, Hattori Y, Kirihata M, Ono K, Kuroiwa T, Miyatake SI. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiat Oncol 2017; 12:26. [PMID: 28114947 PMCID: PMC5260095 DOI: 10.1186/s13014-017-0765-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. METHODS We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. RESULTS In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. CONCLUSIONS Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.
Collapse
Affiliation(s)
- Gen Futamura
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan.
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Taichiro Toho
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Hiroki Tanaka
- Kyoto university research reactor institute, 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Shin-Ichiro Masunaga
- Kyoto university research reactor institute, 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Yoshihide Hattori
- Reserch Organization for the 21th Century, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Japan
| | - Mitsunori Kirihata
- Reserch Organization for the 21th Century, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Japan
| | - Koji Ono
- Kyoto university research reactor institute, 2, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| | - Shin-Ichi Miyatake
- Division for Advanced Medical Development, Cancer Center, Osaka Medical College, 2-7 Daigakumachi, Takatuki-shi, Osaka, Japan
| |
Collapse
|
25
|
Portu A, Postuma I, Gadan MA, Saint Martin G, Olivera MS, Altieri S, Protti N, Bortolussi S. Reprint of Inter-comparison of boron concentration measurements at INFN-University of Pavia (Italy) and CNEA (Argentina). Appl Radiat Isot 2015; 106:171-5. [DOI: 10.1016/j.apradiso.2015.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022]
|
26
|
Inter-comparison of boron concentration measurements at INFN-University of Pavia (Italy) and CNEA (Argentina). Appl Radiat Isot 2015; 105:35-39. [PMID: 26454177 DOI: 10.1016/j.apradiso.2015.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues.
Collapse
|
27
|
Portu A, Molinari AJ, Thorp SI, Pozzi ECC, Curotto P, Schwint AE, Saint Martin G. Neutron autoradiography to study boron compound microdistribution in an oral cancer model. Int J Radiat Biol 2015; 91:329-35. [PMID: 25510259 DOI: 10.3109/09553002.2014.995381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We previously reported the therapeutic efficacy of Sequential Boron Neutron Capture Therapy (Seq-BNCT), i.e., BPA (boronophenylalanine) - BNCT followed by GB-10 (decahydrodecaborate) - BNCT 1 or 2 days later, in the hamster cheek pouch oral cancer model. We have utilized the neutron autoradiography methodology to study boron microdistribution in tissue. The aim was to use this method to evaluate if the distribution of GB-10 is altered by prior application of BPA-BNCT in Sequential BNCT protocols. MATERIALS AND METHODS Extensive qualitative and quantitative autoradiography analyses were performed in the following groups: G1 (animals without boron); G2 (animals injected with BPA); G3 (animals injected with GB-10); G4 (same as G3, 24 h after BPA-BNCT); and G5 (same protocol as G4, 48 h interval). RESULTS A detailed study of boron localization in the different tissue structures of tumor, premalignant and normal tissue in the hamster cheek pouch was performed. GB-10 accumulated preferentially in non-neoplastic connective tissue, whereas for BPA neoplastic cells showed the highest boron concentration. Boron distribution was less heterogeneous for GB-10 than for BPA. In premalignant and normal tissue, GB-10 and BPA accumulated mostly in connective tissue and epithelium, respectively. CONCLUSIONS BPA-BNCT could alter boron microlocalization of GB-10 administered subsequently. Boron targeting homogeneity is essential for therapeutic success.
Collapse
Affiliation(s)
- Agustina Portu
- National Atomic Energy Commission (CNEA) , San Martin, Buenos Aires , Argentina
| | | | | | | | | | | | | |
Collapse
|