1
|
Yoshida T, Yang ZH, Ashida S, Yu ZX, Shrivastav S, Vamsi Rojulpote K, Bahar P, Nguyen D, Springer DA, Munasinghe J, Starost MF, Hoffmann VJ, Rosenberg AZ, Bielekova B, Wen H, Remaley AT, Kopp JB. Apolipoprotein-L1 G1 variant contributes to hydrocephalus but not to atherosclerosis in apolipoprotein-E knock-out mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.28.630625. [PMID: 39803526 PMCID: PMC11722280 DOI: 10.1101/2024.12.28.630625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Introduction In USA, six million individuals with Sub-Saharan ancestry carry two APOL1 high-risk variants, which increase the risk for kidney diseases. Whether APOL1 high-risk variants are independent risk factors for cardiovascular diseases is unclear and requires further investigation. Methods We characterized a mouse model to investigate the role of APOL1 in dyslipidemia and cardiovascular diseases. Transgenic mice carrying APOL1 (G0 and G1 variants) on bacterial artificial chromosomes (BAC/APOL1 mice) were crossed with the ApoE knock-out (ApoE-KO) atherosclerosis mouse model. The compound transgenic mice were evaluated for the impact of APOL1 on systemic phenotypes. Results ApoE-KO mice carrying APOL1-G0 and APOL1-G1 did not show differences in the extent of atherosclerotic lesions or aortic calcification, as evaluated by Sudan IV staining and radiographic examination, respectively. However, ~20% of ApoE-KO; BAC/APOL1-G1 mice developed hydrocephalus and required euthanasia. The hydrocephalus was communicating and likely was due to excess cerebrospinal fluid produced by the choroid plexus, where epithelial cells expressed APOL1. Single-nuclear RNA-seq of choroid plexus identified solute transporter upregulation and mTORC2 pathway activation in APOL1-G1-expressing epithelial cells. Further, in the All of Us cohort, we found higher hydrocephalus prevalence among individuals with the APOL1-G1 variant in both recessive and dominant models, supporting the mouse findings. Conclusion While APOL1-G1 expression in ApoE-KO mice did not worsen cardiovascular disease phenotypes, we uncovered hydrocephalus as a novel APOL1 risk allele-mediated phenotype. These findings extend the spectrum of APOL1-associated pathologies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
- Graduate School of Medicine, The University of Tokyo, Tokyo, JAPAN
| | - Zhi-Hong Yang
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Shinji Ashida
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Zu Xi Yu
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Shashi Shrivastav
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | | | - Piroz Bahar
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - David Nguyen
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Jeeva Munasinghe
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | | | | | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Bibi Bielekova
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Han Wen
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Alan T. Remaley
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Jeffrey B. Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| |
Collapse
|
2
|
Bahar P, Nguyen D, Wang M, Mazilu D, Bennett EE, Wen H. Online Calibration of a Linear Micro Tomosynthesis Scanner. J Imaging 2022; 8:jimaging8100292. [PMID: 36286386 PMCID: PMC9604648 DOI: 10.3390/jimaging8100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
In a linear tomosynthesis scanner designed for imaging histologic samples of several centimeters size at 10 µm resolution, the mechanical instability of the scanning stage (±10 µm) exceeded the resolution of the image system, making it necessary to determine the trajectory of the stage for each scan to avoid blurring and artifacts in the images that would arise from the errors in the geometric information used in 3D reconstruction. We present a method for online calibration by attaching a layer of randomly dispersed micro glass beads or calcium particles to the bottom of the sample stage. The method was based on a parametric representation of the rigid body motion of the sample stage-marker layer assembly. The marker layer was easy to produce and proven effective in the calibration procedure.
Collapse
|
3
|
Yang ZH, Nill K, Takechi-Haraya Y, Playford MP, Nguyen D, Yu ZX, Pryor M, Tang J, Rojulpote KV, Mehta NN, Wen H, Remaley AT. Differential Effect of Dietary Supplementation with a Soybean Oil Enriched in Oleic Acid versus Linoleic Acid on Plasma Lipids and Atherosclerosis in LDLR-Deficient Mice. Int J Mol Sci 2022; 23:ijms23158385. [PMID: 35955518 PMCID: PMC9369370 DOI: 10.3390/ijms23158385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
- Correspondence: ; Tel.: +1-301-496-6220
| | - Kimball Nill
- Minnesota Soybean Research & Promotion Council, 1020 Innovation Lane, Mankato, MN 56001, USA;
| | - Yuki Takechi-Haraya
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA; (M.P.P.); (N.N.M.)
| | - David Nguyen
- Laboratory of Imaging Physics, NHLBI, NIH, Bethesda, MD 20892, USA; (D.N.); (H.W.)
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA;
| | - Milton Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| | - Jingrong Tang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA; (M.P.P.); (N.N.M.)
| | - Han Wen
- Laboratory of Imaging Physics, NHLBI, NIH, Bethesda, MD 20892, USA; (D.N.); (H.W.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| |
Collapse
|
4
|
Truong M, Dreier T, Wassélius J, Sundius L, Persson A, Lovric G, Bonnin A, Goncalves I, Bech M. Sub-micrometer morphology of human atherosclerotic plaque revealed by synchrotron radiation-based μCT—A comparison with histology. PLoS One 2022; 17:e0265598. [PMID: 35471989 PMCID: PMC9041845 DOI: 10.1371/journal.pone.0265598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Histology is a long standing and well-established gold standard for pathological characterizations. In recent years however, synchrotron radiation-based micro-computed tomography (SRμCT) has become a tool for extending the imaging of two-dimensional thin sections into three-dimensional imaging of tissue blocks, enabling so-called virtual histology with arbitrary clipping planes, volumetric rendering and automatic segmentation. In this study, we present a thorough characterization of human carotid plaques after endarterectomy of patients with stroke or transient ischemic attack (TIA), investigating several different pathologic structures using both SRμCT and histology. Phase-contrast SRμCT was performed with two different magnifications (voxel sizes 6.5 μm and 0.65 μm, respectively), and histology was performed with multiple different stainings (Alpha-actin, Glycophorin A, von Kossa, Movat, CD68). The 0.65 μm high-resolution SRμCT was performed on selected areas with plaque typical relevant morphology, identified on the 6.5 μm low-resolution SRμCT. The tomography datasets were reconstructed with additional 3D volume rendering and compared to histology. In total, nine different regions with typical pathologic structures were identified and imaged with high-resolution SRμCT. The results show many characteristics typical for advanced atherosclerotic plaques, clinically relevant, namely ruptures with thrombosis, neo-vascularization, inflammatory infiltrates in shoulder regions, lipid rich necrotic cores (LRNC), thin fibrous cap, calcifications, lumen irregularities, and changes in vessel wall structures such as the internal elastic membrane. This method’s non-destructive nature renders details of micro-structures with an excellent visual likeness to histology, with the additional strength of multiplanar and 3D visualization and the possibility of multiple re-scans.
Collapse
Affiliation(s)
- My Truong
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Till Dreier
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Excillum AB, Kista, Sweden
| | - Johan Wassélius
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Lena Sundius
- Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ana Persson
- Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Goran Lovric
- Center for Biomedical Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Isabel Goncalves
- Cardiology, Skåne University Hospital and Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Martin Bech
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
5
|
Verleden SE, Braubach P, Werlein C, Plucinski E, Kuhnel MP, Snoeckx A, El Addouli H, Welte T, Haverich A, Laenger FP, Dettmer S, Pauwels P, Verplancke V, Van Schil PE, Lapperre T, Kwakkel-Van-Erp JM, Ackermann M, Hendriks JMH, Jonigk D. From Macroscopy to Ultrastructure: An Integrative Approach to Pulmonary Pathology. Front Med (Lausanne) 2022; 9:859337. [PMID: 35372395 PMCID: PMC8965844 DOI: 10.3389/fmed.2022.859337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Pathology and radiology are complimentary tools, and their joint application is often crucial in obtaining an accurate diagnosis in non-neoplastic pulmonary diseases. However, both come with significant limitations of their own: Computed Tomography (CT) can only visualize larger structures due to its inherent–relatively–poor resolution, while (histo) pathology is often limited due to small sample size and sampling error and only allows for a 2D investigation. An innovative approach of inflating whole lung specimens and subjecting these subsequently to CT and whole lung microCT allows for an accurate matching of CT-imaging and histopathology data of exactly the same areas. Systematic application of this approach allows for a more targeted assessment of localized disease extent and more specifically can be used to investigate early mechanisms of lung diseases on a morphological and molecular level. Therefore, this technique is suitable to selectively investigate changes in the large and small airways, as well as the pulmonary arteries, veins and capillaries in relation to the disease extent in the same lung specimen. In this perspective we provide an overview of the different strategies that are currently being used, as well as how this growing field could further evolve.
Collapse
Affiliation(s)
- Stijn E. Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Division of Pneumology, University Hospital Antwerp, Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem, Belgium
| | - Peter Braubach
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Edith Plucinski
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P. Kuhnel
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Annemiek Snoeckx
- Division of Radiology, University Hospital Antwerp and University of Antwerp, Edegem, Belgium
| | - Haroun El Addouli
- Division of Radiology, University Hospital Antwerp and University of Antwerp, Edegem, Belgium
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Division of Pneumology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Division of Thoracic Surgery, Hannover Medical School, Hannover, Germany
| | - Florian P. Laenger
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Sabine Dettmer
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Patrick Pauwels
- Division of Pathology, University Hospital Antwerp, Edegem, Belgium
| | | | - Paul E. Van Schil
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem, Belgium
| | - Therese Lapperre
- Division of Pneumology, University Hospital Antwerp, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Antwerp University, Antwerp, Belgium
| | - Johanna M. Kwakkel-Van-Erp
- Division of Pneumology, University Hospital Antwerp, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Antwerp University, Antwerp, Belgium
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Witten, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jeroen M. H. Hendriks
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem, Belgium
| | - Danny Jonigk
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- *Correspondence: Danny Jonigk
| |
Collapse
|
6
|
Nguyen DT, Larsen TC, Wang M, Knutsen RH, Yang Z, Bennett EE, Mazilu D, Yu ZX, Tao X, Donahue DR, Gharib AM, Bleck CKE, Moss J, Remaley AT, Kozel BA, Wen H. X-ray microtomosynthesis of unstained pathology tissue samples. J Microsc 2021; 283:9-20. [PMID: 33482682 PMCID: PMC8248055 DOI: 10.1111/jmi.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Abstract
In pathology protocols, a tissue block, such as one containing a mouse brain or a biopsy sample from a patient, can produce several hundred thin sections. Substantial time may be required to analyse all sections. In cases of uncertainty regarding which sections to focus on, noninvasive scout imaging of intact blocks can help in guiding the pathology procedure. The scouting step is ideally done in a time window of minutes without special sample preparation that may interfere with the pathology procedures. The challenge is to obtain some visibility of unstained tissue structures at sub‐10 µm resolution. We explored a novel x‐ray tomosynthesis method as a way to maximise contrast‐to‐noise ratio, a determinant of tissue visibility. It provided a z‐stack of thousands of images at 7.3 μm resolution (10% contrast, half‐period of 68.5 line pairs/mm), in scans of 5‐15 minutes. When compared with micro‐CT scans, the straight‐line tomosynthesis scan did not need to rotate the sample, which allowed flat samples, such as paraffin blocks, to be kept as close as possible to the x‐ray source. Thus, given the same hardware, scan time and resolution, this mode maximised the photon flux density through the sample, which helped in maximising the contrast‐to‐noise ratio. The tradeoff of tomosynthesis is incomplete 3D information. The microtomosynthesis scanner has scanned 110 unstained human and animal tissue samples as part of their respective pathology protocols. In all cases, the z‐stack of images showed tissue structures that guided sectioning or provided correlative structural information. We describe six examples that presented different levels of visibility of soft tissue structures. Additionally, in a set of coronary artery samples from an HIV patient donor, microtomosynthesis made a new discovery of isolated focal calcification in the internal elastic lamina of coronary wall, which was the onset of medial calcific sclerosis in the arteries.
Collapse
Affiliation(s)
- David T Nguyen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Muyang Wang
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Russel H Knutsen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhihong Yang
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Eric E Bennett
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Dumitru Mazilu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zu-Xi Yu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Xi Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institutes of Health, Bethesda, Maryland
| | - Ahmed M Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joel Moss
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Beth A Kozel
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Han Wen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|