1
|
Treadway MT, Betters SA, Cooper JA, Li CX, Zhang X, Michopoulos V. Medial prefrontal glutamate response to acute stress is associated with social subordination in female rhesus macaques. Transl Psychiatry 2025; 15:107. [PMID: 40157907 PMCID: PMC11954936 DOI: 10.1038/s41398-025-03334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Chronic psychosocial stress is associated with increased risk of psychiatric disorders. Magnetic resonance spectroscopy (MRS) in humans has been used to show that glutamate levels in medial prefrontal cortex (mPFC) following acute stress exposure adapt to recent chronic stress levels. Here, we sought to determine the presence of this glutamate stress response adaptation in rhesus macaques, whose societies are maintained by dominance relationships that are enforced by agonistic interactions and result in chronic stress phenotypes seen in humans. We tested the hypothesis that change in mPFC glutamate after an acute stressor would be moderated by behavioral factors related to social subordination in a manner similar to that previously observed in humans. Seventeen adult female rhesus monkeys (Macaca mulatta, 13-23 yrs.) were observed over ten weeks to collect behavioral data and then received two MRS scans. The first scan occurred after acute stress manipulation involving relocation and isolation. The second control scan occurred after acclimation to the new location. As expected, we found that a behavioral measure of social subordination predicted an adaptive glutamate response such that animals experiencing more submissive behavior asymmetry (a behavioral measure related to social subordination) exhibited an attenuated glutamate response to the acute stressor. These data establish the use of MRS to measure the adaptive glutamate stress in non-human primates and will help further our understanding of the neurobiology of stress adaptation.
Collapse
Affiliation(s)
- Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA.
| | | | - Jessica A Cooper
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA
| | - Chun-Xia Li
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Xiaodong Zhang
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
2
|
Meng Y, Li CX, Zhang X. Improving delineation of the corticospinal tract in the monkey brain scanned with conventional DTI by using a compressed sensing based algorithm. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:265-274. [PMID: 36698482 PMCID: PMC9873154 DOI: 10.13104/imri.2022.26.4.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background The corticospinal tract (CST) is a major tract for motor function. It can be impaired by stroke. Its degeneration is associated with stroke outcome. Diffusion tensor imaging (DTI) tractography plays an important role in assessing fiber bundle integrity. However, it is limited in detecting crossing fibers in the brain. The crossing fiber angular resolution of intra-voxel structure (CFARI) algorithm shows potential to resolve complex fibers in the brain. The objective of the present study was to improve delineation of CST pathways in monkey brains scanned by conventional DTI. Methods Healthy rhesus monkeys were scanned by diffusion MRI with 128 diffusion encoding directions to evaluate the CFARI algorithm. Four monkeys with ischemic occlusion were also scanned with DTI (b = 1000 s/mm2, 30 diffusion directions) at 6, 48, and 96 hours post stroke. CST fibers were reconstructed with DTI and CFARI-based tractography and evaluated. A two-way repeated MANOVA was used to determine significances of changes in DTI indices, tract number, and volumes of the CST between hemispheres or post-stroke time points. Results CFARI algorithm revealed substantially more fibers originated from the ventral premotor cortex in healthy and stroke monkey brains than DTI tractography. In addition, CFARI showed better sensitivity in detecting CST abnormality than DTI tractography following stroke. Conclusion CFARI significantly improved delineation of the CST in the brain scanned by DTI with 30 gradient directions. It showed better sensitivity in detecting abnormity of the CST following stroke. Preliminary results suggest that CFARI could facilitate prediction of function outcomes after stroke.
Collapse
Affiliation(s)
- Yuguang Meng
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - Chun-Xia Li
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - Xiaodong Zhang
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329,Division of Neurological Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329,Correspondence to: Dr. Xiaodong Zhang, 954 Gatewood Rd NE, Atlanta, GA 30329, USA, Telephone: 1-404-712-9874, Fax: 1-404-712-9917,
| |
Collapse
|
3
|
Zhang X. Magnetic resonance imaging of the monkey fetal brain in utero. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:177-190. [PMID: 36937817 PMCID: PMC10019598 DOI: 10.13104/imri.2022.26.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHPs) are the closest living relatives of the human and play a critical role in investigating the effects of maternal viral infection and consumption of medicines, drugs, and alcohol on fetal development. With the advance of contemporary fast MRI techniques with parallel imaging, fetal MRI is becoming a robust tool increasingly used in clinical practice and preclinical studies to examine congenital abnormalities including placental dysfunction, congenital heart disease (CHD), and brain abnormalities non-invasively. Because NHPs are usually scanned under anesthesia, the motion artifact is reduced substantially, allowing multi-parameter MRI techniques to be used intensively to examine the fetal development in a single scanning session or longitudinal studies. In this paper, the MRI techniques for scanning monkey fetal brains in utero in biomedical research are summarized. Also, a fast imaging protocol including T2-weighted imaging, diffusion MRI, resting-state functional MRI (rsfMRI) to examine rhesus monkey fetal brains in utero on a clinical 3T scanner is introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, Georgia, 30329, USA
| |
Collapse
|
4
|
Zhang X, Li CX, Yan Y, Nair G, Rilling JK, Herndon JG, Preuss TM, Hu X, Li L. In-vivo diffusion MRI protocol optimization for the chimpanzee brain and examination of aging effects on the primate optic nerve at 3T. Magn Reson Imaging 2020; 77:194-203. [PMID: 33359631 DOI: 10.1016/j.mri.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. METHODS A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. RESULTS The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. CONCLUSION The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America.
| | - Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Yumei Yan
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Govind Nair
- qMRI Core Facility, NINDS, NIH, Bethesda, MD 20892, United States of America
| | - James K Rilling
- Department of Anthropology, Emory University, Atlanta, GA, United States of America; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Xiaoping Hu
- Dept of Bioengineering, University of California, Riverside, CA, United States of America
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
5
|
Li Y, Lee J, Long X, Qiao Y, Ma T, He Q, Cao P, Zhang X, Zheng H. A Magnetic Resonance-Guided Focused Ultrasound Neuromodulation System With a Whole Brain Coil Array for Nonhuman Primates at 3 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4401-4412. [PMID: 32833632 DOI: 10.1109/tmi.2020.3019087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The phased-array radio frequency (RF) coil plays a vital role in magnetic resonance-guided focused ultrasound (MRgFUS) neuromodulation studies, where accurate brain functional stimulations and neural circuit observations are required. Although various designs of phased-array coils have been reported, few are suitable for ultrasound stimulations. In this study, an MRgFUS neuromodulation system comprised of a whole brain coverage non-human primate (NHP) RF coil and an MRI-compatible ultrasound device was developed. When compared to a single loop coil, the NHP coil provided up to a 50% increase in the signal-to-noise ratio (SNR) in the brain and acquired better anatomical image-quality. The NHP coil also demonstrated the ability to achieve higher spatial resolution and reduce distortion in echo-planer imaging (EPI). Ultrasound beam characteristics and transcranial magnetic resonance acoustic radiation force (MR-ARF) were measured for simulated positions, and calculated B0 maps were employed to establish MRI-compatibility. The differences between focused off and on ultrasound techniques were measured using SNR, g-factors, and temporal SNR (tSNR) analyses and all deviations were under 2.3%. The EPI images quality and stable tSNR demonstrated the suitability of the MRgFUS neuromodulation system to conduct functional MRI studies. Last, the time course of the blood oxygen level dependent (BOLD) signal of posterior cingulate cortex in a focused ultrasound neuromodulation study was detected and repeated with MR thermometry.
Collapse
|
6
|
Li CX, Kempf D, Howell L, Zhang X. Effects of alfaxalone on cerebral blood flow and intrinsic neural activity of rhesus monkeys: A comparison study with ketamine. Magn Reson Imaging 2020; 75:134-140. [PMID: 33127411 DOI: 10.1016/j.mri.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Alfaxalone has been used increasingly in biomedical research and veterinary medicine of large animals in recent years. However, its effects on the cerebral blood flow (CBF) physiology and intrinsic neuronal activity of anesthetized brains remain poorly understood. METHODS Four healthy adult rhesus monkeys were anesthetized initially with alfaxalone (0.125 mg/kg/min) or ketamine (1.6 mg/kg/min) for 50 min, then administrated with 0.8% isoflurane for 60 min. Heart rates, breathing beats, and blood pressures were continuously monitored. CBF data were collected using pseudo-continuous arterial spin-labeling (pCASL) MRI technique and rsfMRI data were collected using single-shot EPI sequence for each anesthetic. RESULTS Both the heart rates and mean arterial pressure (MAP) remained more stable during alfaxalone infusion than those during ketamine administration. Alfaxalone reduced CBF substantially compared to ketamine anesthesia (grey matter, 65 ± 22 vs. 179 ± 38 ml/100g/min, p<0.001; white matter, 14 ± 7 vs. 26 ± 6 ml/100g/min, p < 0.05); In addition, CBF increase was seen in all selected cortical and subcortical regions of alfaxalone-pretreated monkey brains during isoflurane exposure, very different from the findings in isoflurane-exposed monkeys pretreated with ketamine. Also, alfaxalone showed suppression effects on functional connectivity of the monkey brain similar to ketamine. CONCLUSION Alfaxalone showed strong suppression effects on CBF of the monkey brain.The residual effect of alfaxalone on CBF of isoflurane-exposed brains was evident and monotonous in all the examined brain regions when used as induction agent for inhalational anesthesia. In particular, alfaxalone showed similar suppression effect on intrinsic neuronal activity of the brain in comparison with ketamine. These findings suggest alfaxalone can be a good alternative to veterinary anesthesia in neuroimaging examination of large animal models. However, its effects on CBF and functional connectivity should be considered.
Collapse
Affiliation(s)
- Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Doty Kempf
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Leonard Howell
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States.
| |
Collapse
|
7
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Li CX, Patel S, Zhang X. Evaluation of multi-shell diffusion MRI acquisition strategy on quantitative analysis using multi-compartment models. Quant Imaging Med Surg 2020; 10:824-834. [PMID: 32355646 DOI: 10.21037/qims.2020.03.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Multi-compartment diffusion models such as Neurite Orientation Dispersion and Density Imaging (NODDI) have been increasingly used for diffusion MRI (dMRI) data processing in biomedical research. However, those models usually require multiple HARDI shells that may increase scanning duration substantially, and their application can be hindered in uncooperative patients (like infants) accordingly. Also, it is highly expected that the same dataset can be explored with multiple diffusion models for retrieving complementary information. Methods Multiple gradient-encoding schemes which consisted of 4-6 shells, moderate b-values (bmax =1,500 or 2,000 s/mm2), and 32-80 gradient directions were explored. The corresponding time of acquisition (TA) for a single scan ranged from 3 to 8 minutes respectively. The dMRI protocols were tested on macaque monkeys using a 3T clinical setting. The data were analysed using both NODDI and diffusion basic spectrum imaging (DBSI) models. Results The maps of orientation dispersion index (ODI) and CSF were consistent across the 4-6 shell sampling schemes. However, the corresponding intra-cellular volume fraction (ICVF) maps showed reduced pixel counts [1,100±98 (80 directions) vs. 806±70 (32 directions), one slice] in white matter when fewer gradient directions or lower b-value was applied. The hindered diffusion and CSF ratio maps were comparable across these sampling schemes. The maps of restricted diffusion ratio varied across the schemes. However, its mean ratios (0.23±0.02 vs. 0.22±0.01) and pixel counts (1,540±70 vs. 1,510±38, one slice) between the schemes of 80 and 32 directions with b=2,000 s/mm2 were comparable. Conclusions The present study reports a fast multi-shell dMRI data acquisition and processing strategy which allows for obtaining complementary information about microstructural alteration and inflammation from a single dMRI data set with both NODDI and DBSI models. The proposed approach may be particularly useful for characterizing the neurodegenerative disorders in uncooperative patients like children or acute stroke patients in which brain injury is associated with inflammation.
Collapse
Affiliation(s)
- Chun-Xia Li
- Yerkes Imaging Center, Emory University, Atlanta, GA, USA
| | - Sudeep Patel
- Yerkes Imaging Center, Emory University, Atlanta, GA, USA
| | - Xiaodong Zhang
- Yerkes Imaging Center, Emory University, Atlanta, GA, USA.,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Rao JS, Liu Z, Zhao C, Wei RH, Liu RX, Zhao W, Zhou X, Tian PY, Yang ZY, Li XG. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 2019; 48:320-328. [PMID: 31148186 DOI: 10.1111/jmp.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 04/03/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The relatively tiny spinal cord of non-human primate (NHP) causes increased challenge in diffusion tensor imaging (DTI) post-processing. This study aimed to establish a reliable correction strategy applied to clinical DTI images of NHP. METHODS Six normal and partial spinal cord injury (SCI) rhesus monkeys underwent 3T MR scanning. A correction strategy combining multiple iterations and non-rigid deformation was used for DTI image post-processing. Quantitative evaluations were then conducted to investigate effects of distortion correction. RESULTS After correction, longitudinal geometric distortion, global distortion, and residual distance errors were all significantly decreased (P < 0.05). Fractional anisotropy at the injured site was remarkably lower than that at the contralateral site (P = 0.0488) and was substantially lower than those at the adjacent superior (P = 0.0157) and inferior (P = 0.0128) areas at the same side. CONCLUSIONS Our image correction strategy can improve the quality of the DTI images of NHP thoracic cords, contributing to the development of SCI preclinical research.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhao
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Measurement Control and Information Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ruo-Xi Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhao-Yang Yang
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|