1
|
Choi SE, Bucci T, Huang JY, Yiu KH, Tsang CTW, Lau KK, Hill A, Irving G, Lip GYH, Abdul-Rahim AH. Early statin use is associated with improved survival and cardiovascular outcomes in patients with atrial fibrillation and recent ischaemic stroke: A propensity-matched analysis of a global federated health database. Eur Stroke J 2025; 10:116-127. [PMID: 39254367 PMCID: PMC11558656 DOI: 10.1177/23969873241274213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION Statins reduce recurrent stroke and cardiovascular events in patients with non-cardioembolic stroke. The benefits of statins in patients with AF and recent IS remain unclear. We aimed to investigate the benefits of statins in patients with AF and recent IS. PATIENTS AND METHODS This retrospective, cohort study was conducted using deidentified electronic medical records within TriNetX platform. Patients with AF and recent IS, who received statins within 28 days of their index stroke were propensity score-matched with those who did not. Patients were followed up for up to 2 years. Primary outcomes were the 2-year risk of recurrent IS, all-cause mortality and the composite outcome of all-cause mortality, recurrent IS, transient ischaemic attack (TIA), and acute myocardial infarction (MI). Secondary outcomes were the 2-year risk of TIA, intracranial haemorrhage (ICH), acute MI, and hospital readmission. Cox regression analyses were used to calculate hazard ratios (HRs) with 95% confidence intervals (95%CI). RESULTS Of 20,902 patients with AF and recent IS, 7500 (35.9%) received statins within 28 days of their stroke and 13,402 (64.1%) did not. 11,182 patients (mean age 73.7 ± 11.5; 5277 (47.2%) female) remained after propensity score matching. Patients who received early statins had significantly lower risk of recurrent IS (HR: 0.45, 95%CI: 0.41-0.48, p < 0.001), mortality (HR: 0.75, 95%CI: 0.66-0.84, p < 0.001), the composite outcome (HR: 0.48, 95%CI: 0.45-0.52, p < 0.001), TIA (HR: 0.37, 95%CI: 0.30-0.44, p < 0.001), ICH (HR: 0.59, 95%CI: 0.47-0.72, p < 0.001 ), acute MI (HR: 0.35, 95%CI: 0.30-0.42, p < 0.001) and hospital readmission (HR: 0.46, 95%CI: 0.42-0.50, <0.001). Beneficial effects of early statins were evident in the elderly, different ethnic groups, statin dose intensity, and AF subtypes, large vessel occlusion and embolic strokes and within the context of statin lipophilicity, optimal LDL-cholesterol levels, various cardiovascular comorbidities, treatment with intravenous thrombolysis or endovascular thrombectomy, and NIHSS 0-5 and NIHSS > 5 subgroups. DISCUSSION AND CONCLUSION Patients with AF and recent IS, who received early statins, had a lower risk of recurrent stroke, death, and other cardiovascular outcomes including ICH, compared to those who did not.
Collapse
Affiliation(s)
- Sylvia E Choi
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tommaso Bucci
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Jia-yi Huang
- Cardiology Division, Department of Medicine, The University of Hong Kong Shen Zhen Hospital, Shen Zhen, China
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kai-Hang Yiu
- Cardiology Division, Department of Medicine, The University of Hong Kong Shen Zhen Hospital, Shen Zhen, China
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Christopher TW Tsang
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kui Kai Lau
- Division of Neurology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Andrew Hill
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Stroke Division, Department of Medicine for Older People, Whiston Hospital, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot, UK
| | - Greg Irving
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Health Research Institute, Edge Hill University Faculty of Health and Social Care, Ormskirk, UK
| | - Gregory YH Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Azmil H Abdul-Rahim
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Stroke Division, Department of Medicine for Older People, Whiston Hospital, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot, UK
| |
Collapse
|
2
|
Martínez-Alonso E, Escobar-Peso A, Guerra-Pérez N, Roca M, Masjuan J, Alcázar A. Dihydropyrimidinase-Related Protein 2 Is a New Partner in the Binding between 4E-BP2 and eIF4E Related to Neuronal Death after Cerebral Ischemia. Int J Mol Sci 2023; 24:ijms24098246. [PMID: 37175950 PMCID: PMC10179276 DOI: 10.3390/ijms24098246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Transient cerebral ischemia induces neuronal degeneration, followed in time by secondary delayed neuronal death that is strongly correlated with a permanent inhibition of protein synthesis in vulnerable brain regions, while protein translational rates are recovered in resistant areas. In the translation-regulation initiation step, the eukaryotic initiation factor (eIF) 4E is a key player regulated by its association with eIF4E-binding proteins (4E-BPs), mostly 4E-BP2 in brain tissue. In a previous work, we identified dihydropyrimidinase-related protein 2 (DRP2) as a 4E-BP2-interacting protein. Here, using a proteomic approach in a model of transient cerebral ischemia, a detailed study of DRP2 was performed in order to address the challenge of translation restoration in vulnerable regions. In this report, several DRP2 isoforms that have a specific interaction with both 4E-BP2 and eIF4E were identified, showing significant and opposite differences in this association, and being differentially detected in resistant and vulnerable regions in response to ischemia reperfusion. Our results provide the first evidence of DRP2 isoforms as potential regulators of the 4E-BP2-eIF4E association that would have consequences in the delayed neuronal death under ischemic-reperfusion stress. The new knowledge reported here identifies DRP2 as a new target to promote neuronal survival after cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marcel Roca
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| |
Collapse
|
3
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
4
|
Martínez-Alonso E, Guerra-Pérez N, Escobar-Peso A, Regidor I, Masjuan J, Alcázar A. Differential Association of 4E-BP2-Interacting Proteins Is Related to Selective Delayed Neuronal Death after Ischemia. Int J Mol Sci 2021; 22:ijms221910327. [PMID: 34638676 PMCID: PMC8509075 DOI: 10.3390/ijms221910327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Cerebral ischemia induces an inhibition of protein synthesis and causes cell death and neuronal deficits. These deleterious effects do not occur in resilient areas of the brain, where protein synthesis is restored. In cellular stress conditions, as brain ischemia, translational repressors named eukaryotic initiation factor (eIF) 4E-binding proteins (4E-BPs) specifically bind to eIF4E and are critical in the translational control. We previously described that 4E-BP2 protein, highly expressed in brain, can be a molecular target for the control of cell death or survival in the reperfusion after ischemia in an animal model of transient cerebral ischemia. Since these previous studies showed that phosphorylation would not be the regulation that controls the binding of 4E-BP2 to eIF4E under ischemic stress, we decided to investigate the differential detection of 4E-BP2-interacting proteins in two brain regions with different vulnerability to ischemia-reperfusion (IR) in this animal model, to discover new potential 4E-BP2 modulators and biomarkers of cerebral ischemia. For this purpose, 4E-BP2 immunoprecipitates from the resistant cortical region and the vulnerable hippocampal cornu ammonis 1 (CA1) region were analyzed by two-dimensional (2-D) fluorescence difference in gel electrophoresis (DIGE), and after a biological variation analysis, 4E-BP2-interacting proteins were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Interestingly, among the 4E-BP2-interacting proteins identified, heat shock 70 kDa protein-8 (HSC70), dihydropyrimidinase-related protein-2 (DRP2), enolase-1, ubiquitin carboxyl-terminal hydrolase isozyme-L1 (UCHL1), adenylate kinase isoenzyme-1 (ADK1), nucleoside diphosphate kinase-A (NDKA), and Rho GDP-dissociation inhibitor-1 (Rho-GDI), were of notable interest, showing significant differences in their association with 4E-BP2 between resistant and vulnerable regions to ischemic stress. Our data contributes to the first characterization of the 4E-BP2 interactome, increasing the knowledge in the molecular basis of the protection and vulnerability of the ischemic regions and opens the way to detect new biomarkers and therapeutic targets for diagnosis and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Av. Complutense, 28040 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
| | - Ignacio Regidor
- Department of Neurophysiology, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain;
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain;
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Kosowski M, Smolarczyk-Kosowska J, Hachuła M, Maligłówka M, Basiak M, Machnik G, Pudlo R, Okopień B. The Effects of Statins on Neurotransmission and Their Neuroprotective Role in Neurological and Psychiatric Disorders. Molecules 2021; 26:2838. [PMID: 34064670 PMCID: PMC8150718 DOI: 10.3390/molecules26102838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Statins are among the most widely used drug classes in the world. Apart from their basic mechanism of action, which is lowering cholesterol levels, many pleiotropic effects have been described so far, such as anti-inflammatory and antiatherosclerotic effects. A growing number of scientific reports have proven that these drugs have a beneficial effect on the functioning of the nervous system. The first reports proving that lipid-lowering therapy can influence the development of neurological and psychiatric diseases appeared in the 1990s. Despite numerous studies about the mechanisms by which statins may affect the functioning of the central nervous system (CNS), there are still no clear data explaining this effect. Most studies have focused on the metabolic effects of this group of drugs, however authors have also described the pleiotropic effects of statins, pointing to their probable impact on the neurotransmitter system and neuroprotective effects. The aim of this paper was to review the literature describing the impacts of statins on dopamine, serotonin, acetylcholine, and glutamate neurotransmission, as well as their neuroprotective role. This paper focuses on the mechanisms by which statins affect neurotransmission, as well as on their impacts on neurological and psychiatric diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), vascular dementia (VD), stroke, and depression. The pleiotropic effects of statin usage could potentially open floodgates for research in these treatment domains, catching the attention of researchers and clinicians across the globe.
Collapse
Affiliation(s)
- Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Joanna Smolarczyk-Kosowska
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.S.-K.); (R.P.)
| | - Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Mateusz Maligłówka
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Robert Pudlo
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.S.-K.); (R.P.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| |
Collapse
|
6
|
Proteomic study of hypothalamus in pigs exposed to heat stress. BMC Vet Res 2020; 16:286. [PMID: 32787853 PMCID: PMC7424663 DOI: 10.1186/s12917-020-02505-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3 °C; RH = 90%). Result The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.
Collapse
|
7
|
Santaella A, Wessels HJCT, Kulkarni P, Gloerich J, Kuiperij B, Bloem BR, van Gool AJ, Cabré S, Alamilla V, Verbeek MM. Proteomic profiling of striatal tissue of a rat model of Parkinson's disease after implantation of collagen-encapsulated human umbilical cord mesenchymal stem cells. J Tissue Eng Regen Med 2020; 14:1077-1086. [PMID: 32548924 PMCID: PMC7496133 DOI: 10.1002/term.3081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder of movement worldwide. To date, only symptomatic treatments are available. Implantation of collagen‐encapsulated human umbilical cord mesenchymal stem cells (hUC‐MSCs) is being developed as a novel therapeutic approach to potentially modify PD progression. However, implanted collagen scaffolds may induce a host tissue response. To gain insight into such response, hUC‐MSCs were encapsulated into collagen hydrogels and implanted into the striatum of hemi‐Parkinsonian male Sprague–Dawley rats. One or 14 days after implantation, the area of interest was dissected using a cryostat. Total protein extracts were subjected to tryptic digestion and subsequent LC–MS/MS analyses for protein expression profiling. Univariate and multivariate analyses were performed to identify differentially expressed protein profiles with subsequent gene ontology and pathway analysis for biological interpretation of the data; 2,219 proteins were identified by MaxQuant at 1% false discovery rate. A high correlation of label‐free quantification (LFQ) protein values between biological replicates (r = .95) was observed. No significant differences were observed between brains treated with encapsulated hUC‐MSCs compared to appropriate controls. Proteomic data were highly robust and reproducible, indicating the suitability of this approach to map differential protein expression caused by the implants. The lack of differences between conditions suggests that the effects of implantation may be minimal. Alternatively, effects may only have been focal and/or could have been masked by nonrelevant high‐abundant proteins. For follow‐up assessment of local changes, a more accurate dissection technique, such as laser micro dissection, and analysis method are recommended.
Collapse
Affiliation(s)
- Anna Santaella
- Departments of Neurology and Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Purva Kulkarni
- Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bea Kuiperij
- Departments of Neurology and Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Departments of Neurology and Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alain J van Gool
- Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvia Cabré
- Pharmacology & Therapeutics and CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.,CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Verónica Alamilla
- Pharmacology & Therapeutics and CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.,CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Li H, You W, Li X, Shen H, Chen G. Proteomic-Based Approaches for the Study of Ischemic Stroke. Transl Stroke Res 2019; 10:601-606. [PMID: 31278685 DOI: 10.1007/s12975-019-00716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
9
|
Wen M, Jin Y, Zhang H, Sun X, Kuai Y, Tan W. Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term Phases of Focal Cerebral Ischemia-Reperfusion Injury. J Proteome Res 2019; 18:3099-3118. [PMID: 31265301 DOI: 10.1021/acs.jproteome.9b00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stroke is a leading cause of mortality and disability, and ischemic stroke accounts for more than 80% of the disease occurrence. Timely reperfusion is essential in the treatment of ischemic stroke, but it is known to cause ischemia-reperfusion (I/R) injury and the relevant studies have mostly focused on the acute phase. Here we reported on a global proteomic analysis to investigate the development of cerebral I/R injury in the subacute and long-term phases. A rat model was used, with 2 h-middle cerebral artery occlusion (MCAO) followed with 1, 7, and 14 days of reperfusion. The proteins of cerebral cortex were analyzed by SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS. Totally 5621 proteins were identified, among which 568, 755, and 492 proteins were detected to have significant dys-regulation in the model groups with 1, 7, and 14 days of reperfusion, respectively, when compared with the corresponding sham groups (n = 4, fold change ≥1.5 or ≤0.67 and p ≤ 0.05). Bioinformatic analysis on the functions and reperfusion time-dependent dys-regulation profiles of the proteins exhibited changes of structures and biological processes in cytoskeleton, synaptic plasticity, energy metabolism, inflammation, and lysosome from subacute to long-term phases of cerebral I/R injury. Disruption of cytoskeleton and synaptic structures, impairment of energy metabolism processes, and acute inflammation responses were the most significant features in the subacute phase. With the elongation of reperfusion time to the long-term phase, a tendency of recovery was detected on cytoskeleton, while inflammation pathways different from the subacute phase were activated. Also, lysosomal structures and functions might be restored. This is the first work reporting the proteome changes that occurred at different time points from the subacute to long-term phases of cerebral I/R injury and we expect it would provide useful information to improve the understanding of the mechanisms involved in the development of cerebral I/R injury and suggest candidates for treatment.
Collapse
Affiliation(s)
- Meiling Wen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
10
|
Simats A, García-Berrocoso T, Ramiro L, Giralt D, Gill N, Penalba A, Bustamante A, Rosell A, Montaner J. Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology. Sci Rep 2018; 8:7899. [PMID: 29784938 PMCID: PMC5962600 DOI: 10.1038/s41598-018-26237-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022] Open
Abstract
The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of stroke.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Gill
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Jung EJ, Chung KH, Kim CW. Identification of simvastatin-regulated targets associated with JNK activation in DU145 human prostate cancer cell death signaling. BMB Rep 2018; 50:466-471. [PMID: 28803608 PMCID: PMC5625694 DOI: 10.5483/bmbrep.2017.50.9.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
The results of this study show that c-Jun N-terminal kinase (JNK) activation was associated with the enhancement of docetaxel-induced cytotoxicity by simvastatin in DU145 human prostate cancer cells. To better understand the basic molecular mechanisms, we investigated simvastatin-regulated targets during simvastatin-induced cell death in DU145 cells using two-dimensional (2D) proteomic analysis. Thus, vimentin, Ras-related protein Rab-1B (RAB1B), cytoplasmic hydroxymethylglutaryl-CoA synthase (cHMGCS), thioredoxin domain-containing protein 5 (TXNDC5), heterogeneous nuclear ribonucleoprotein K (hnRNP K), N-myc downstream-regulated gene 1 (NDRG1), and isopentenyl-diphosphate Delta-isomerase 1 (IDI1) protein spots were identified as simvastatin-regulated targets involved in DU145 cell death signaling pathways. Moreover, the JNK inhibitor SP600125 significantly inhibited the upregulation of NDRG1 and IDI protein levels by combination treatment of docetaxel and simvastatin. These results suggest that NDRG1 and IDI could at least play an important role in DU145 cell death signaling as simvastatin-regulated targets associated with JNK activation.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Gyeongsang National University School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Ky Hyun Chung
- Department of Urology, Gyeongsang National University Hospital, and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Choong Won Kim
- Department of Biochemistry, Gyeongsang National University School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
12
|
Sun P, Hernandez-Guillamón M, Campos-Martorell M, Simats A, Montaner J, Unzeta M, Solé M. Simvastatin blocks soluble SSAO/VAP-1 release in experimental models of cerebral ischemia: Possible benefits for stroke-induced inflammation control. Biochim Biophys Acta Mol Basis Dis 2017; 1864:542-553. [PMID: 29175057 DOI: 10.1016/j.bbadis.2017.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/19/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Beyond cholesterol reduction, statins mediate their beneficial effects on stroke patients through pleiotropic actions. They have shown anti-inflammatory properties by a number of different mechanisms, including the inhibition of NF-κB transcriptional activity and the consequent increase and release of adhesion molecules. We have studied simvastatin's effects on the vascular enzyme semicarbazide-sensitive amine oxidase/vascular adhesion protein 1 (SSAO/VAP-1), which is involved in stroke-mediated brain injury. SSAO/VAP-1 has leukocyte-binding capacity and mediates the expression of other adhesion proteins through signaling molecules generated by its catalytic activity. Our results indicate that soluble SSAO/VAP-1 is released into the bloodstream after an ischemic stimulus, in parallel with an increase in E-selectin and VCAM-1 and correlating with infarct volume. Simvastatin blocks soluble SSAO/VAP-1 release and prevents E-selectin and VCAM-1 overexpression as well. Simvastatin also effectively blocks SSAO/VAP-1-mediated leukocyte adhesion, although it is not an enzymatic inhibitor of SSAO in vitro. In addition, simvastatin-induced changes in adhesion molecules are greater in human brain endothelial cell cultures expressing SSAO/VAP-1, compared to those not expressing it, indicating some synergic effect with SSAO/VAP-1. We think that part of the beneficial effect of simvastatin in stroke is mediated by the attenuation of the SSAO/VAP-1-dependent inflammatory response.
Collapse
Affiliation(s)
- Ping Sun
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mar Hernandez-Guillamón
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Campos-Martorell
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Unzeta
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Montse Solé
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
13
|
Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017; 22:848-869. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule.
Collapse
|
14
|
Villa RF, Ferrari F, Moretti A. Effects of Neuroprotectants Before and After Stroke: Statins and Anti-hypertensives. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Bustamante A, Simats A, Vilar-Bergua A, García-Berrocoso T, Montaner J. Blood/Brain Biomarkers of Inflammation After Stroke and Their Association With Outcome: From C-Reactive Protein to Damage-Associated Molecular Patterns. Neurotherapeutics 2016; 13:671-684. [PMID: 27538777 PMCID: PMC5081112 DOI: 10.1007/s13311-016-0470-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stroke represents one of the most important causes of disability and death in developed countries. However, there is a lack of prognostic tools in clinical practice to monitor the neurological condition and predict the final outcome. Blood biomarkers have been proposed and studied in this indication; however, no biomarker is currently used in clinical practice. The stroke-related neuroinflammatory processes have been associated with a poor outcome in stroke, as well as with poststroke complications. In this review, we focus on the most studied blood biomarkers of this inflammatory processes, cytokines, and C-reactive protein, evaluating its association with outcome and complications in stroke through the literature, and performing a systematic review on the association of C-reactive protein and functional outcome after stroke. Globally, we identified uncertainty with regard to the association of the evaluated biomarkers with stroke outcome, with little added value on top of clinical predictors such as age or stroke severity, which makes its implementation unlikely in clinical practice for global outcome prediction. Regarding poststroke complications, despite being more practical scenarios in which to make medical decisions following a biomarker prediction, not many studies have been performed, although there are now some candidates for prediction of poststroke infections. Finally, as potential new candidates, we reviewed the pathophysiological actions of damage-associated molecular patterns as triggers of the neuroinflammatory cascade of stroke, and their possible use as biomarkers.
Collapse
Affiliation(s)
- Alejandro Bustamante
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Andrea Vilar-Bergua
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Campos-Martorell M, Cano-Sarabia M, Simats A, Hernández-Guillamon M, Rosell A, Maspoch D, Montaner J. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. Int J Nanomedicine 2016; 11:3035-48. [PMID: 27418824 PMCID: PMC4935044 DOI: 10.2147/ijn.s107292] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS Although the beneficial effects of statins on stroke have been widely demonstrated both in experimental studies and in clinical trials, the aim of this study is to prepare and characterize a new liposomal delivery system that encapsulates simvastatin to improve its delivery into the brain. MATERIALS AND METHODS In order to select the optimal liposome lipid composition with the highest capacity to reach the brain, male Wistar rats were submitted to sham or transitory middle cerebral arterial occlusion (MCAOt) surgery and treated (intravenous [IV]) with fluorescent-labeled liposomes with different net surface charges. Ninety minutes after the administration of liposomes, the brain, blood, liver, lungs, spleen, and kidneys were evaluated ex vivo using the Xenogen IVIS(®) Spectrum imaging system to detect the load of fluorescent liposomes. In a second substudy, simvastatin was assessed upon reaching the brain, comparing free and encapsulated simvastatin (IV) administration. For this purpose, simvastatin levels in brain homogenates from sham or MCAOt rats at 2 hours or 4 hours after receiving the treatment were detected through ultra-high-protein liquid chromatography. RESULTS Whereas positively charged liposomes were not detected in brain or plasma 90 minutes after their administration, neutral and negatively charged liposomes were able to reach the brain and accumulate specifically in the infarcted area. Moreover, neutral liposomes exhibited higher bioavailability in plasma 4 hours after being administered. The detection of simvastatin by ultra-high-protein liquid chromatography confirmed its ability to cross the blood-brain barrier, when administered either as a free drug or encapsulated into liposomes. CONCLUSION This study confirms that liposome charge is critical to promote its accumulation in the brain infarct after MCAOt. Furthermore, simvastatin can be delivered after being encapsulated. Thus, simvastatin encapsulation might be a promising strategy to ensure that the drug reaches the brain, while increasing its bioavailability and reducing possible side effects.
Collapse
Affiliation(s)
- Mireia Campos-Martorell
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Universitat Autònoma de Barcelona, Barcelona
| | - Alba Simats
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona
| | - Anna Rosell
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Universitat Autònoma de Barcelona, Barcelona; Institució Catalana de Recerca i Estudis Avançats (ICREA)
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona; Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
17
|
ZHAO Y, ZHANG Q, CHEN Z, LIU N, KE C, XU Y, WU W. Simvastatin combined with bone marrow stromal cells treatment activatesastrocytes to ameliorate neurological function after ischemic stroke in rats. Turk J Biol 2016; 40:519-528. [DOI: 10.3906/biy-1507-141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
18
|
Potential Protective Effects of Chronic Anterior Thalamic Nucleus Stimulation on Hippocampal Neurons in Epileptic Monkeys. Brain Stimul 2015; 8:1049-57. [PMID: 26298643 DOI: 10.1016/j.brs.2015.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/01/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stimulation of the anterior nucleus of the thalamus (ANT) is effective in seizure reduction, but the mechanisms underlying the beneficial effects of ANT stimulation are unclear. OBJECTIVE To assess the beneficial effects of ANT stimulation on hippocampal neurons of epileptic monkeys. METHODS Chronic ANT stimulation was applied to kainic acid-induced epileptic monkeys. Behavioral seizures were continuously monitored. Immunohistochemical staining and western blot assays were performed to assess the hippocampal injury and the effects of ANT stimulation. RESULTS The frequency of seizures was 42.8% lower in the stimulation group compared with the sham-stimulation group. Immunohistochemical staining and western blot analyses indicated that neuronal loss and apoptosis were less severe and that neurofilament synthesis was enhanced in the stimulation monkeys compared with the sham-stimulation group. These data showed that the hippocampal injury was less severe in monkeys in the stimulation group than in those in the sham-stimulation group. CONCLUSIONS Our data suggest that chronic ANT stimulation may exert protective effects on hippocampal neurons and boost the regeneration of neuronal fibers. These effects may be closely related to the mechanisms of ANT stimulation in epilepsy treatment.
Collapse
|
19
|
Gutiérrez-Vargas JA, Cespedes-Rubio A, Cardona-Gómez GP. Perspective of synaptic protection after post-infarction treatment with statins. J Transl Med 2015; 13:118. [PMID: 25884826 PMCID: PMC4403706 DOI: 10.1186/s12967-015-0472-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/23/2015] [Indexed: 11/30/2022] Open
Abstract
Stroke is the second most common cause of death in people over 45 years of age in Colombia and is the leading cause of permanent disability worldwide. Cerebral ischemia is a stroke characterized by decreased blood flow due to the occlusion of one or more cerebral arteries, which can cause memory problems and hemiplegia or paralysis, among other impairments. The literature contains hundreds of therapies (invasive and noninvasive) that exhibit a neuroprotective effect when evaluated in animal models. However, in clinical trials, most of these drugs do not reproduce the previously demonstrated neuroprotective property, and some even have adverse effects that had not previously been detected in animal experimentation. Statins are drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis. Several studies have shown that statin therapy in an animal model of focal cerebral ischemia reduces infarct volume, as well as markers of neurodegeneration, activates neuronal survival pathways, and improves performance on learning and memory tests. Given the implied therapeutic benefit and the limited understanding of the mechanism of action of statins in brain repair, it is necessary to address the biochemical and tissue effects of these drugs on synaptic proteins, such as NMDA receptors, synaptic adhesion proteins, and cytoskeletal proteins; these proteins are highly relevant therapeutic targets, which, in addition to giving a structural account of synaptic connectivity and function, are also indicators of cellular communication and the integrity of the blood–brain barrier, which are widely affected in the long term post-cerebral infarct but, interestingly, are protected by statins when administered during the acute phase.
Collapse
Affiliation(s)
- Johanna Andrea Gutiérrez-Vargas
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Angel Cespedes-Rubio
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. .,Neurodegenerative Diseases Research Group, Department of Animal Health - Faculty of Veterinary Medicine - University of Tolima, Ibague, Colombia.
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
20
|
Abstract
Effective traumatic brain injury (TBI) therapeutics remains stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development because it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Finally, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for patients with TBI.
Collapse
Affiliation(s)
- Pavel N. Lizhnyak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Karamanos Y, Gosselet F, Dehouck MP, Cecchelli R. Blood–Brain Barrier Proteomics: Towards the Understanding of Neurodegenerative Diseases. Arch Med Res 2014; 45:730-7. [DOI: 10.1016/j.arcmed.2014.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/15/2022]
|