1
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
2
|
Zeng Z, Chen Y, Geng X, Zhang Y, Wen X, Yan Q, Wang T, Ling C, Xu Y, Duan J, Zheng K, Sun Z. NcRNAs: Multi‑angle participation in the regulation of glioma chemotherapy resistance (Review). Int J Oncol 2022; 60:76. [PMID: 35506469 PMCID: PMC9083885 DOI: 10.3892/ijo.2022.5366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
As the most common primary tumour of the central nervous system, gliomas have a high recurrence rate after surgical resection and are resistant to chemotherapy, particularly high‑grade gliomas dominated by glioblastoma multiforme (GBM). The prognosis of GBM remains poor despite improvements in treatment modalities, posing a serious threat to human health. At present, although drugs such as temozolomide, cisplatin and bevacizumab, are effective in improving the overall survival of patients with GBM, most patients eventually develop drug resistance, leading to poor clinical prognosis. The development of multidrug resistance has therefore become a major obstacle to improving the effectiveness of chemotherapy for GBM. The ability to fully understand the underlying mechanisms of chemotherapy resistance and to develop novel therapeutic targets to overcome resistance is critical to improving the prognosis of patients with GBM. Of note, growing evidence indicates that a large number of abnormally expressed noncoding RNAs (ncRNAs) have a central role in glioma chemoresistance and may target various mechanisms to modulate chemosensitivity. In the present review, the roles and molecular mechanisms of ncRNAs in glioma drug resistance were systematically summarized, the potential of ncRNAs as drug resistance markers and novel therapeutic targets of glioma were discussed and prospects for glioma treatment were outlined. ncRNAs are a research direction for tumor drug resistance mechanisms and targeted therapies, which not only provides novel perspectives for reversing glioma drug resistance but may also promote the development of precision medicine for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Qingyu Yan
- Office of Academic Research, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Tingting Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chen Ling
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yan Xu
- Clinical Laboratory, Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343100, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhiwei Sun
- Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
3
|
He Y, Chen Y, Tong Y, Long W, Liu Q. Identification of a circRNA-miRNA-mRNA regulatory network for exploring novel therapeutic options for glioma. PeerJ 2021; 9:e11894. [PMID: 34434651 PMCID: PMC8351580 DOI: 10.7717/peerj.11894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Glioma is the most common brain neoplasm with a poor prognosis. Circular RNA (circRNA) and their associated competing endogenous RNA (ceRNA) network play critical roles in the pathogenesis of glioma. However, the alteration of the circRNA-miRNA-mRNA regulatory network and its correlation with glioma therapy haven't been systematically analyzed. Methods With GEO, GEPIA2, circBank, CSCD, CircInteractome, mirWalk 2.0, and mirDIP 4.1, we constructed a circRNA-miRNA-mRNA network in glioma. LASSO regression and multivariate Cox regression analysis established a hub mRNA signature to assess the prognosis. GSVA was used to estimate the immune infiltration level. Potential anti-glioma drugs were forecasted using the cMap database and evaluated with GSEA using GEO data. Results A ceRNA network of seven circRNAs (hsa_circ_0030788/0034182/0000227/ 0018086/0000229/0036592/0002765), 15 miRNAs(hsa-miR-1200/1205/1248/ 1303/3925-5p/5693/581/586/599/607/640/647/6867-5p/767-3p/935), and 46 mRNAs (including 11 hub genes of ARHGAP11A, DRP2, HNRNPA3, IGFBP5, IP6K2, KLF10, KPNA4, NRP2, PAIP1, RCN1, and SEMA5A) was constructed. Functional enrichment showed they influenced majority of the hallmarks of tumors. Eleven hub genes were proven to be decent prognostic signatures for glioma in both TCGA and CGGA datasets. Forty-six LASSO regression significant genes were closely related to immune infiltration. Finally, five compounds (fulvestrant, tanespimycin, mifepristone, tretinoin, and harman) were predicted as potential treatments for glioma. Among them, mifepristone and tretinoin were proven to inhibit the cell cycle and DNA repair in glioma. Conclusion This study highlights the potential pathogenesis of the circRNA-miRNA-mRNA regulatory network and identifies novel therapeutic options for glioma.
Collapse
Affiliation(s)
- Yi He
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yihong Chen
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yuxin Tong
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wenyong Long
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Qing Liu
- Neurosurgery Department, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
All-Trans Retinoic Acid Fosters the Multifarious U87MG Cell Line as a Model of Glioblastoma. Brain Sci 2021; 11:brainsci11060812. [PMID: 34207434 PMCID: PMC8234004 DOI: 10.3390/brainsci11060812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown. Simulating human GBM in the laboratory relies on representative cell lines and xenograft models for translational medicine. Due to U87MG source discrepancy and differential proliferation responses to retinoic acid treatment, this study highlights the challenges faced by laboratory scientists working with this representative GBM cell line. Investigating the response to all trans-retinoic acid (ATRA) revealed its sequestering of the prominin-1 stem cell marker. ICAM-1 universally present throughout U87MG was enhanced by ATRA, of interest for chemotherapy targeting studies. ATRA triggered diverse expression patterns of long non-coding RNAs PARTICLE and GAS5 in the leading edge and established monolayer growth zone microenvironment. Karyotyping confirmed the female origin of U87MG sourced from Europe. Passaging U87MG revealed the presence of chromosomal anomalies reflective of structural genomic alterations in this glioblastoma cell line. All evidence considered, this study exposes further phenotypic nuances of U87MG which may belie researchers seeking data contributing towards the elusive cure for GBM.
Collapse
|
5
|
Ghosh S, Kumar V, Mukherjee H, Lahiri D, Roy P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon 2021; 7:e07262. [PMID: 34195404 PMCID: PMC8225984 DOI: 10.1016/j.heliyon.2021.e07262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
The human brain is a well-connected, intricate network of neurons and supporting glial cells. Neurodegenerative diseases arise as a consequence of extensive loss of neuronal cells leading to disruption of their natural structure and function. On the contrary, rapid proliferation and growth of glial as well as neuronal cells account for the occurrence of malignancy in brain. In both cases, the molecular microenvironment holds pivotal importance in the progression of the disease. MicroRNAs (miRNA) are one of the major components of the molecular microenvironment. miRNAs are small, noncoding RNAs that control gene expression post-transcriptionally. As compared to other tissues, the brain expresses a substantially high number of miRNAs. In the early stage of neurodegeneration, miRNA expression upregulates, while in oncogenesis, miRNA expression is gradually lost. Neurodegeneration and brain cancer is presumed to be under the influence of identical pathways of cell proliferation, differentiation and cell death which are tightly regulated by miRNAs. It has been confirmed experimentally that miRNA expression can be regulated by nutraceuticals - macronutrients, micronutrients or natural products derived from food; thereby making dietary supplements immensely significant for targeting miRNAs having altered expression patterns during neurodegeneration or oncogenesis. In this review, we will discuss in detail, about the common miRNAs involved in brain cancers and neurodegenerative diseases along with the comprehensive list of miRNAs involved separately in both pathological conditions. We will also discuss the role of nutraceuticals in the regulation of those miRNAs which are involved in both of these pathological conditions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
6
|
Liang C, Qiao G, Liu Y, Tian L, Hui N, Li J, Ma Y, Li H, Zhao Q, Cao W, Liu H, Ren X. Overview of all-trans-retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur J Med Chem 2021; 220:113451. [PMID: 33895500 DOI: 10.1016/j.ejmech.2021.113451] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/04/2023]
Abstract
All-trans-retinoic acid (ATRA) is effective for preventing cancer and treating skin diseases and acute promyelocytic leukaemia (APL). These pharmacological effects of ATRA are mainly mediated by retinoid X receptors (RXRs) and retinoic acid receptors (RARs). This article provides a comprehensive overview of the clinical progress on and the molecular mechanisms of ATRA in the treatment of APL. ATRA can promote the transcriptional activation of differentiation-related genes and regulate autophagy by inhibiting mTOR, which results in anti-APL effects. In detail, the structures, pharmacological effects, and clinical studies of 68 types of ATRA analogues are described. These compounds have excellent antitumour therapeutic potential and could be used as lead compounds for further development and research.
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuling Ma
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
7
|
MiR-302b as a Combinatorial Therapeutic Approach to Improve Cisplatin Chemotherapy Efficacy in Human Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12082261. [PMID: 32806777 PMCID: PMC7464985 DOI: 10.3390/cancers12082261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Chemotherapy is still the standard of care for triple-negative breast cancers (TNBCs). Here, we investigated miR-302b as a therapeutic tool to enhance cisplatin sensitivity in vivo and unraveled the molecular mechanism. Materials and Methods: TNBC-xenografted mice were treated with miR-302b or control, alone or with cisplatin. Genome-wide transcriptome analysis and independent-validation of Integrin Subunit Alpha 6 (ITGA6) expression was assessed on mice tumor samples. Silencing of ITGA6 was performed to evaluate cisplatin response in vitro. Further, potential transcription factors of ITGA6 (E2F transcription facor 1 (E2F1), E2F transcription factor 2 (E2F2), and Yin Yang 1 (YY1)) were explored to define the miRNA molecular mechanism. The miR-302b expression was also assessed in TNBC patients treated with chemotherapy. Results: The miR–302b-cisplatin combination significantly impaired tumor growth versus the control through indirect ITGA6 downregulation. Indeed, ITGA6 was downmodulated in mice treated with miR-302b–cisplatin, and ITGA6 silencing increased drug sensitivity in TNBC cells. In silico analyses and preclinical assays pointed out the regulatory role of the E2F family and YY1 on ITGA6 expression under miR-302b–cisplatin treatment. Finally, miR-302b enrichment correlated with better overall survival in 118 TNBC patients. Conclusion: MiR-302b can be exploited as a new therapeutic tool to improve the response to chemotherapy, modulating the E2F family, YY1, and ITGA6 expression. Moreover, miR-302b could be defined as a new prognostic factor in TNBC patients.
Collapse
|
8
|
Li MN, Lu N, Wang YX, Zhang XQ, Zhou Y, Zhang MX. Regulatory mechanism of tumor suppressor gene miR-302b in malignant tumors. Shijie Huaren Xiaohua Zazhi 2020; 28:570-580. [DOI: 10.11569/wcjd.v28.i14.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are a class of endogenous non-coding RNA molecules that regulate the translation of proteins. They play important regulatory roles in the growth, development, and aging of organisms, as well as cell proliferation, differentiation, apoptosis, and even cancer. miR-302b can participate in the regulation of the expression of a variety of genes, and functions as a tumor suppressor gene in the occurrence, development, invasion, and metastasis of malignant tumors. This article discusses the expression of miR-302b in malignant tumors and its biological functions and molecular mechanism.
Collapse
Affiliation(s)
- Min-Na Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ning Lu
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Yi-Xuan Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Xiao-Qing Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ying Zhou
- Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ming-Xin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China,the Second Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
9
|
Abstract
Retinoic acid (RA), the biologically active metabolite of vitamin A, regulates a vast spectrum of biological processes, such as cell differentiation, proliferation, apoptosis, and morphogenesis. microRNAs (miRNAs) play a crucial role in regulating gene expression by binding to messenger RNA (mRNA) which leads to mRNA degradation and/or translational repression. Like RA, miRNAs regulate multiple biological processes, including proliferation, differentiation, apoptosis, neurogenesis, tumorigenesis, and immunity. In fact, RA regulates the expression of many miRNAs to exert its biological functions. miRNA and RA regulatory networks have been studied in recent years. In this manuscript, we summarize literature that highlights the impact of miRNAs in RA-regulated molecular networks included in the PubMed.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Atharva Piyush Rohatgi
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
10
|
Jusic A, Devaux Y. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115:23. [PMID: 32140778 DOI: 10.1007/s00395-020-0783-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Mitochondrial function and integrity are vital for the maintenance of cellular homeostasis, particularly in high-energy demanding cells. Cardiomyocytes have a large number of mitochondria, which provide a continuous and bulk supply of the ATP necessary for cardiac mechanical function. More than 90% of the ATP consumed by the heart is derived from the mitochondrial oxidative metabolism. Decreased energy supply as the main consequence of mitochondrial dysfunction is closely linked to cardiovascular disease (CVD). The discovery of noncoding RNA (ncRNAs) in the mitochondrial compartment has changed the traditional view of molecular pathways involved in the regulatory network of CVD. Mitochondrial ncRNAs participate in controlling cardiovascular pathogenesis by regulating glycolysis, mitochondrial energy status, and the expression of genes involved in mitochondrial metabolism. Understanding the underlying mechanisms of the association between impaired mitochondrial function resulting from fluctuation in expression levels of ncRNAs and specific disease phenotype can aid in preventing and treating CVD. This review presents an overview of the role of mitochondrial ncRNAs in the complex regulatory network of the cardiovascular pathology. We will summarize and discuss (1) mitochondrial microRNAs (mitomiRs) and long noncoding RNAs (lncRNAs) encoded either by nuclear or mitochondrial genome which are involved in the regulation of mitochondrial metabolism; (2) the role of mitomiRs and lncRNAs in the pathogenesis of several CVD such as hypertension, cardiac hypertrophy, acute myocardial infarction and heart failure; (3) the biomarker and therapeutic potential of mitochondrial ncRNAs in CVD; (4) and the challenges inherent to their translation into clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg.
| | | |
Collapse
|
11
|
Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci 2020; 111:1065-1075. [PMID: 31957939 PMCID: PMC7156871 DOI: 10.1111/cas.14317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
As a novel class of noncoding RNAs, microRNAs (miRNAs) can effectively silence their target genes at the posttranscriptional level. Various biological processes, such as cell proliferation, differentiation, and motility, are regulated by miRNAs. In different diseases and different stages of disease, miRNAs have various expression patterns, which makes them candidate prognostic markers and therapeutic targets. Abnormal miRNA expression has been detected in numerous neoplastic diseases in humans, which indicates the potential role of miRNAs in tumorigenesis. Previous studies have indicated that miRNAs are involved in nearly the entire process of tumor development. MicroRNA‐302a, miR‐302b, miR‐302c, miR‐302d, and miR‐367 are members of the miR‐302/367 cluster that plays various biological roles in diverse neoplastic diseases by targeting different genes. These miRNAs have been implicated in several unique characteristics of cancer, including the evasion of growth suppressors, the sustained activation of proliferative signaling, the evasion of cell death and senescence, and the regulation of angiogenesis, invasion, and metastasis. This review provides a critical overview of miR‐302/367 cluster dysregulation and the subsequent effects in cancer and highlights the vast potential of members of this cluster as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Jiajia Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
13
|
Lima L, de Melo TCT, Marques D, de Araújo JNG, Leite ISF, Alves CX, Genre J, Silbiger VN. Modulation of all-trans retinoic acid-induced MiRNA expression in neoplastic cell lines: a systematic review. BMC Cancer 2019; 19:866. [PMID: 31470825 PMCID: PMC6717326 DOI: 10.1186/s12885-019-6081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is a genetic and epigenetic disease that involves inactivation of tumor suppressor genes and activation of proto-oncogenes. All-trans retinoic acid (ATRA) is an isomer of retinoic acid involved in the onset of differentiation and apoptosis of a number of normal and cancer cells, functioning as an anti-cancer agent in several neoplasms. Ectopic changes in the expression of certain microRNAs (miRNAs) occur in response to ATRA, leading to phenotypic alterations in neoplastic cell lines. Moreover, the modulation of miRNA patterns upon ATRA-treatment may represent an effective chemopreventive and anti-cancer therapy strategy. The present systematic review was performed to provide an overview of the modulation of ATRA-induced miRNA expression in different types of neoplastic cells and identify the efficacy of intervention factors (i.e., concentration and duration of treatment) and how they influence expression profiles of oncogenesis-targeting miRNAs. Methods A systematic search was conducted according to the PRISMA statement via the US National Library of Medicine MEDLINE/PubMed bibliographic search engine. Results The search identified 31 experimental studies involving human cell lines from nine different cancer types (neuroblastoma, acute myeloid leukemia, breast cancer, lung cancer, pancreatic cancer, glioma, glioblastoma, embryonal carcinoma, and colorectal cancer) treated with ATRA at concentrations ranging from 10− 3 μmol/L to 102 μmol mol/L for 24 h to 21 days. Conclusion The concentrations used and the duration of treatment of cancer cells with ATRA varied widely. The presence of ATRA in the culture medium of cancer cells was able to modulate the expression of more than 300 miRNAs, and inhibit invasive behavior and deregulated growth of cancer cells, resulting in total tumor remission in some cases. ATRA may thus be broadly effective for neoplasm treatment and prevention, although these studies may not accurately represent in vivo conditions. Additional studies are required to elucidate ATRA-induced miRNA modulation during neoplasm treatment.
Collapse
Affiliation(s)
- Lara Lima
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Diego Marques
- Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jéssica Nayara Góes de Araújo
- Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Camila Xavier Alves
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Julieta Genre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian Nogueira Silbiger
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil. .,Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil. .,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Faria S/N, Petrópolis, Natal - RN, 59012-570, Brazil.
| |
Collapse
|
14
|
Zhang Z, Wang N, Zhang Y, Zhao J, Lv J. Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19. Chem Biol Interact 2019; 309:108705. [PMID: 31199929 DOI: 10.1016/j.cbi.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs have emerged as critical mediators of cerebral ischaemia/reperfusion injury. Recent studies have demonstrated that microRNA-302b-3p (miR-302b-3p) plays an important role in regulating apoptosis and oxidative stress in various cells. However, whether miR-302b-3p is involved in regulating cerebral ischaemia/reperfusion injury-induced neuronal apoptosis and oxidative stress remains unknown. In the present study, we explored the potential function and molecular mechanism of miR-302b-3p in oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, using an in vitro model of cerebral ischaemia/reperfusion injury. We found that miR-302b-3p expression was up-regulated by OGD/R treatment in neurons. The inhibition of miR-302b-3p improved cell viability, and reduced apoptosis and the production of reactive oxygen species, showing a protective effect against OGD/R-induced injury. Interestingly, miR-302b-3p was shown to target and modulate murine fibroblast growth factor 15 (FGF15). Moreover, our results showed that miR-302b-3p down-regulation contributed to the promotion of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE)-mediated antioxidant signaling associated with the inactivation of glycogen synthase kinase-3β. However, the knockdown of FGF15 significantly reversed the miR-302b-3p inhibition-mediated protective effect in OGD/R-treated neurons. Overall, these results demonstrated that miR-302b-3p inhibition confers a neuroprotective effect in OGD/R-treated neurons by up-regulating Nrf2/ARE antioxidant signaling via targeting FGF15, providing a novel target for neuroprotection in cerebral ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhenni Zhang
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Wang
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yong Zhang
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Zhao
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jianrui Lv
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
15
|
Zhou X, Dai E, Song Q, Ma X, Meng Q, Jiang Y, Jiang W. In silico drug repositioning based on drug-miRNA associations. Brief Bioinform 2019; 21:498-510. [DOI: 10.1093/bib/bbz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Drug repositioning has become a prevailing tactic as this strategy is efficient, economical and low risk for drug discovery. Meanwhile, recent studies have confirmed that small-molecule drugs can modulate the expression of disease-related miRNAs, which indicates that miRNAs are promising therapeutic targets for complex diseases. In this study, we put forward and verified the hypothesis that drugs with similar miRNA profiles may share similar therapeutic properties. Furthermore, a comprehensive drug–drug interaction network was constructed based on curated drug-miRNA associations. Through random network comparison, topological structure analysis and network module extraction, we found that the closely linked drugs in the network tend to treat the same diseases. Additionally, the curated drug–disease relationships (from the CTD) and random walk with restarts algorithm were utilized on the drug–drug interaction network to identify the potential drugs for a given disease. Both internal validation (leave-one-out cross-validation) and external validation (independent drug–disease data set from the ChEMBL) demonstrated the effectiveness of the proposed approach. Finally, by integrating drug-miRNA and miRNA-disease information, we also explain the modes of action of drugs in the view of miRNA regulation. In summary, our work could determine novel and credible drug indications and offer novel insights and valuable perspectives for drug repositioning.
Collapse
Affiliation(s)
- Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Enyu Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qian Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| |
Collapse
|
16
|
Abstract
SIGNIFICANCE RNA is a heterogeneous class of molecules with the minority being protein coding. Noncoding RNAs (ncRNAs) are involved in translation and epigenetic control mechanisms of gene expression. Recent Advances: In recent years, the number of identified ncRNAs has dramatically increased and it is now clear that ncRNAs provide a complex layer of differential gene expression control. CRITICAL ISSUES NcRNAs exhibit interplay with redox regulation. Redox regulation alters the expression of ncRNAs; conversely, ncRNAs alter the expression of generator and effector systems of redox regulation in a complex manner, which will be the focus of this review article. FUTURE DIRECTIONS Understanding the role of ncRNA in redox control will lead to the development of new strategies to alter redox programs. Given that many ncRNAs (particularly microRNAs [miRNAs]) change large gene sets, these molecules are attractive drug candidates; already, now miRNAs can be targeted in patients. Therefore, the development of ncRNA therapies focusing on these molecules is an attractive future strategy. Antioxid. Redox Signal. 29, 793-812.
Collapse
Affiliation(s)
- Matthias S Leisegang
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
17
|
Wang N, Zhang Z, Lv J. Fentanyl inhibits proliferation and invasion via enhancing miR-302b expression in esophageal squamous cell carcinoma. Oncol Lett 2018; 16:459-466. [PMID: 29928433 DOI: 10.3892/ol.2018.8616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Fentanyl is one of the most commonly used intravenous anesthetic agents during cancer resection surgery, but the effect of fentanyl on esophageal squamous cell carcinoma (ESCC) remains unclear. The aim of the present study was to investigate the involvement of microRNA 302b (miR-302b) in the anti-proliferation and anti-invasion effects of fentanyl in ESCC. In the present study, the effects of fentanyl on cell proliferation, apoptosis and invasion were detected using MTT assays, flow cytometry and Transwell assays in ESCC Eca109 and TE1 cell lines. Subsequently, expression of miR-302b was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RT-qPCR and western blot analysis were performed in order to evaluate the expression of ErbB4, a target of miR-302b. Furthermore, anti-miR were used to inhibit miR-302b in fentanyl-treated ESCC cells in order to evaluate the role of miR-302b in the effect of fentanyl on malignant behaviors. Fentanyl inhibited the proliferation of Eca109 and TE1 cells in a dose- and time-dependent manner. Following exposure to fentanyl for 48 h, Eca109 and TE1 cells exhibited increased apoptosis and decreased invasion. Furthermore, fentanyl upregulated miR-302b expression, but downregulated ErbB4 expression. Finally, loss of miR-302b using the anti-miR technique reversed the effect of fentanyl on cell proliferation, apoptosis and invasion in the two ESCC cell lines. Taken together, the results of the present study indicated that fentanyl inhibits the proliferation and invasion of ESCC cells through upregulation of miR-302b.
Collapse
Affiliation(s)
- Ning Wang
- Department of Anesthesiology, Second Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710002, P.R. China
| | - Zhenni Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710002, P.R. China
| | - Jianrui Lv
- Department of Anesthesiology, Second Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710002, P.R. China
| |
Collapse
|
18
|
Xie Y, Sun W, Deng Z, Zhu X, Hu C, Cai L. MiR-302b Suppresses Osteosarcoma Cell Migration and Invasion by Targeting Runx2. Sci Rep 2017; 7:13388. [PMID: 29042587 PMCID: PMC5645461 DOI: 10.1038/s41598-017-13353-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma patients with lung metastasis and local invasion remain challenging to treat despite the significant contribution of the combination of surgery and neo-adjuvant chemotherapy. Our previous microarray study demonstrated that miR-302b had significantly lower expression in osteosarcoma cell lines than in osteoblast cell lines. In the present study, we further elucidated the role of miR-302b in regulating the migration and invasiveness of osteosarcoma. MiR-302b expression was markedly down-regulated in osteosarcoma cell lines and clinical tumour tissues. Lower levels of miR-302b expression were significantly associated with metastasis and high pathological grades. A functional study demonstrated that over-expression of miR-302b suppressed tumour cell proliferation, invasion and migration in vitro and in vivo. Runx2 was identified as a direct target gene for miR-302b by bioinformatics analysis and dual-luciferase reporter gene assay. Moreover, over-expression of miR-302b induced down-regulation of Runx2, OPN, MMP-2, MMP-9, MMP-12, MMP-14, and VEGF in 143B cells. Exogenous expression of Runx2 partially rescued the inhibitory effect of miR-302b on the invasion and migration activity of 143B osteosarcoma cells. Taken together, our results indicate that miR-302b functions as a tumour repressor in the invasion and migration of osteosarcoma by directly downregulating Runx2 expression and may be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yuanlong Xie
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wenchao Sun
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xiaobin Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chao Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
19
|
Ma G, Li Q, Dai W, Yang X, Sang A. Prognostic Implications of miR-302a/b/c/d in Human Gastric Cancer. Pathol Oncol Res 2017; 23:899-905. [PMID: 28795345 DOI: 10.1007/s12253-017-0282-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The microRNA (miR)-302 family consisting four members, miR-302a, miR-302b, miR-302c and miR-302d, plays an important role in diverse biological processes, and regulates many pathological changes, including cancer. However, the involvement of the miR-302 family into human gastric cancer (GC) remains unclear. The aim of this study was to investigate the expression patterns of miR-302a/b/c/d and determine their clinical significance in GC. MATERIALS AND METHODS Expression levels of miR-302a/b/c/d in 160 pairs of human GC and matched normal mucosa tissues were detected by quantitative real-time polymerase chain reaction. Then, the associations of miR-302a/b/c/d expression with various clinicopathological characteristics and patients' prognosis were statistically evaluated. RESULTS The expression levels of miR-302a, miR-302b and miR-302c in GC tissues were all significantly lower than those in matched normal mucosa (all P < 0.001), but miR-302d expression had no significant differences between cancer and normal groups. Additionally, GC patients with low miR-302a, miR-302b and miR-302c expression more frequently had positive lymph node metastasis (all P < 0.05), advanced TNM stage (all P < 0.05) and great depth of invasion (all P < 0.05). More importantly, low miR-302a, miR-302b and miR-302c expression in GC tissues were significantly associated with shorter disease-free and overall survivals of GC patients (all P < 0.05). Further multivariate analysis identified miR-302a, miR-302b and miR-302c as independent prognostic markers for GC patients. CONCLUSIONS GC patients with the decreased expression of miR-302a, miR-302b and miR-302c may had aggressive cancer progression and unfavorable prognosis. Further rigorous validation based on a large cohort of clinical cases should be performed.
Collapse
Affiliation(s)
- Gang Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Qianjun Li
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Weijie Dai
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Xiaozhong Yang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, People's Republic of China.
| | - Aiyu Sang
- Department of Internal Medicine, Lianshui Third People's Hospital, 12 Gaogouzhen 307 Road South, Lianshui, Jiangsu, 223411, People's Republic of China.
| |
Collapse
|
20
|
The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA. PLoS One 2017; 12:e0173890. [PMID: 28323865 PMCID: PMC5360322 DOI: 10.1371/journal.pone.0173890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/28/2017] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose) polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA), higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2), another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.
Collapse
|
21
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 657] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
22
|
Jiao DM, Yan L, Wang LS, Hu HZ, Tang XL, Chen J, Wang J, Li Y, Chen QY. Exploration of inhibitory mechanisms of curcumin in lung cancer metastasis using a miRNA- transcription factor-target gene network. PLoS One 2017; 12:e0172470. [PMID: 28231299 PMCID: PMC5322911 DOI: 10.1371/journal.pone.0172470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
The present study was aimed to unravel the inhibitory mechanisms of curcumin for lung cancer metastasis via constructing a miRNA-transcription factor (TF)-target gene network. Differentially expressed miRNAs between human high-metastatic non-small cell lung cancer 95D cells treated with and without curcumin were identified using a TaqMan human miRNA array followed by real-time PCR, out of which, the top 6 miRNAs (miR-302b-3p, miR-335-5p, miR-338-3p, miR-34c-5p, miR-29c-3p and miR-34a-35p) with more verified target genes and TFs than other miRNAs as confirmed by a literature review were selected for further analysis. The miRecords database was utilized to predict the target genes of these 6 miRNAs, TFs of which were identified based on the TRANSFAC database. The findings of the above procedure were used to construct a miRNA-TF-target gene network, among which miR-34a-5p, miR-34c-5p and miR-302b-3p seemed to regulate CCND1, WNT1 and MYC to be involved in Wnt signaling pathway through the LEF1 transcription factor. Therefore, we suggest miR-34a-5p/miR-34c-5p/miR-302b-3p —LEF1—CCND1/WNT1/MYC axis may be a crucial mechanism in inhibition of lung cancer metastasis by curcumin.
Collapse
Affiliation(s)
- De-min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Li Yan
- Department of Oncology, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Li-shan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hui-zhen Hu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Xia-li Tang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Jun Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Jian Wang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - You Li
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Qing-yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
- * E-mail:
| |
Collapse
|
23
|
Biersack B. Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res 2016; 1:12-34. [PMID: 30159408 PMCID: PMC6096431 DOI: 10.1016/j.ncrna.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The epigenetic regulation of cancer cells by small non-coding RNA molecules, the microRNAs (miRNAs), has raised particular interest in the field of oncology. These miRNAs play crucial roles concerning pathogenic properties of cancer cells and the sensitivity of cancer cells towards anticancer drugs. Certain miRNAs are responsible for an enhanced activity of drugs, while others lead to the formation of tumor resistance. In addition, miRNAs regulate survival and proliferation of cancer cells, in particular of cancer stem-like cells (CSCs), that are especially drug-resistant and, thus, cause tumor relapse in many cases. Various small molecule compounds were discovered that target miRNAs that are known to modulate tumor aggressiveness and drug resistance. This review comprises the effects of naturally occurring small molecules (phenolic compounds and terpenoids) on miRNAs involved in cancer diseases.
Collapse
Key Words
- 1,25-D, 1,25-dihydroxyvitamin D3
- 18-AGA, 18α-glycyrrhetinic acid
- 3,6-DHF, 3,6-dihydroxyflavone
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- CAPE, caffeic acid phenethyl ester
- CDODA-Me, methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate
- Dox, doxorubicin
- EGCG, (−)-epigallocatechin-3-O-gallate
- MicroRNA
- PEG, polyethylene glycol
- PPAP, polycyclic polyprenylated acylphloroglucinol
- Polyphenols
- RA, retinoic acid
- ROS, reactive oxygen species
- TQ, thymoquinone
- Terpenes
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
24
|
Zhang Y, Zhang Z, Li Z, Gong D, Zhan B, Man X, Kong C. MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3. Oncol Rep 2016; 36:1293-300. [DOI: 10.3892/or.2016.4923] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/14/2016] [Indexed: 11/05/2022] Open
|
25
|
Cataldo A, Cheung DG, Balsari A, Tagliabue E, Coppola V, Iorio MV, Palmieri D, Croce CM. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget 2016; 7:786-97. [PMID: 26623722 PMCID: PMC4808033 DOI: 10.18632/oncotarget.6381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023] Open
Abstract
The identification of the molecular mechanisms involved in the establishment of the resistant phenotype represents a critical need for the development of new strategies to prevent or overcome cancer resistance to anti-neoplastic treatments.Breast cancer is the leading cause of cancer-related deaths in women, and resistance to chemotherapy negatively affects patient outcomes. Here, we investigated the potential role of miR-302b in the modulation of breast cancer cell resistance to cisplatin.miR-302b overexpression enhances sensitivity to cisplatin in breast cancer cell lines, reducing cell viability and proliferation in response to the treatment. We also identified E2F1, a master regulator of the G1/S transition, as a direct target gene of miR-302b. E2F1 transcriptionally activates ATM, the main cellular sensor of DNA damage. Through the negative regulation of E2F1, miR-302b indirectly affects ATM expression, abrogating cell-cycle progression upon cisplatin treatment. Moreover miR-302b, impairs the ability of breast cancer cells to repair damaged DNA, enhancing apoptosis activation following cisplatin treatment.These findings indicate that miR-302b plays a relevant role in breast cancer cell response to cisplatin through the modulation of the E2F1/ATM axis, representing a valid candidate as therapeutic tool to overcome chemotherapy resistance.
Collapse
Affiliation(s)
- Alessandra Cataldo
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Douglas G. Cheung
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrea Balsari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Marilena V. Iorio
- Start Up Unit, Fondazione IRCCS Istituto Nazionale dei Tumori of Milan, Milan, Italy
| | - Dario Palmieri
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine and Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Maalouf SW, Liu WS, Pate JL. MicroRNA in ovarian function. Cell Tissue Res 2015; 363:7-18. [PMID: 26558383 DOI: 10.1007/s00441-015-2307-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023]
Abstract
The mammalian ovary is a dynamic organ. The coordination of follicle recruitment, selection, and ovulation and the timely development and regression of the corpus luteum are essential for a functional ovary and fertility. Deregulation of any of these processes results in ovarian dysfunction and potential infertility. MicroRNA (miRNA) are short noncoding RNA that regulate developmental processes and time-sensitive functions. The expression of miRNA in the ovary varies with cell type, function, and stage of the estrous cycle. miRNA are involved in the formation of primordial follicles, follicular recruitment and selection, follicular atresia, oocyte-cumulus cell interaction, granulosal cell function, and luteinization. miRNA are differentially expressed in luteal cells at the various stages of the estrous cycle and during maternal recognition of pregnancy, suggesting a role in luteal development, maintenance, and regression. An understanding of the patterns of expression and functions of miRNA in the ovary will lead to novel therapeutics to treat ovarian dysfunction and improve fertility and, potentially, to the development of better contraceptives.
Collapse
Affiliation(s)
- S W Maalouf
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - W S Liu
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - J L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA.
| |
Collapse
|
27
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
28
|
Abstract
The control of malignant glioma cell cycle by microRNAs (miRNAs) is well established. The deregulation of miRNAs in glioma may contribute to tumor proliferation by directly targeting the critical cell-cycle regulators. Tumor suppressive miRNAs inhibit cell cycle through repressing the expression of positive cell-cycle regulators. However, oncogenic miRNAs promote the cell-cycle progression by targeting cell-cycle negative regulators. Recent studies have identified that transcription factors had involved in the expression of miRNAs. Transcription factors and miRNAs are implicated in regulatory network of glioma cell cycle, the deregulation of these transcription factors might be a cause of the deregulation of miRNAs. Abnormal versions of miRNAs have been implicated in the cell cycle of glioma. Based on those, miRNAs are excellent biomarker candidates and potential targets for therapeutic intervention in glioma.
Collapse
Affiliation(s)
- Qing Ouyang
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| | - Lunshan Xu
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| | - Hongjuan Cui
- b State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology , Southwest University , Chongqing , China
| | - Minhui Xu
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| | - Liang Yi
- a Department of Neurosurgery, Daping Hospital & Research Institute of Surgery , Third Military Medical University , Chongqing , China
| |
Collapse
|