1
|
Peng XQ, Li YZ, Gu C, He XC, Li CP, Sun YQ, Du HZ, Teng ZQ, Liu CM. Marcks overexpression in retinal ganglion cells promotes optic nerve regeneration. Cell Death Dis 2024; 15:906. [PMID: 39695101 DOI: 10.1038/s41419-024-07281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration. Here we show that Marcks overexpression promotes robust axon regeneration either before or after optic nerve crush, but insignificantly impacts neuronal survival. Notably, immunostaining and RNA sequencing demonstrate that Marcks overexpression does not affect known regeneration-associated genes and pathways. Furthermore, combining CNTF which activates the JAK-STAT3 pathway and Marcks overexpression further enhances axon regeneration. Finally, we demonstrate functionally essential effector domain (ED) of MARCKS has similar effects on inducing axon regeneration in RGCs. These results suggest that manipulating Marcks and its ED may become a therapeutic approach to promote axon regeneration after CNS injury.
Collapse
Affiliation(s)
- Xue-Qi Peng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Zhong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chen Gu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xuan-Cheng He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chang-Ping Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
2
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
3
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
4
|
Malter JS. Pin1 and Alzheimer's disease. Transl Res 2023; 254:24-33. [PMID: 36162703 PMCID: PMC10111655 DOI: 10.1016/j.trsl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
Collapse
Affiliation(s)
- James S Malter
- Department of Pathology, UT Southwestern Medical Center, 5333 Harry Hines Blvd, Dallas, TX 75390.
| |
Collapse
|
5
|
Tsentsevitsky AN, Petrov AM. L-type Ca 2+ Channels at Low External Calcium Differentially Regulate Neurotransmitter Release in Proximal-Distal Compartments of the Frog Neuromuscular Junction. Cell Mol Neurobiol 2022; 42:2833-2847. [PMID: 34606017 PMCID: PMC11421649 DOI: 10.1007/s10571-021-01152-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
L-type Ca2+ channels (LTCCs) are key elements in electromechanical coupling in striated muscles and formation of neuromuscular junctions (NMJs). However, the significance of LTCCs in regulation of neurotransmitter release is still far from understanding. Here, we found that LTCCs can increase evoked neurotransmitter release (especially asynchronous component) and spontaneous exocytosis in two functionally different compartment of the frog NMJ, namely distal and proximal parts. The effects of LTCC blockage on evoked and spontaneous release as well as timing of exocytotic events were prevented by inhibition of either protein kinase C (PKC) or P2Y receptors (P2Y-Rs). Hence, endogenous signaling via P2Y-R/PKC axis can sustain LTCC activity. Application of ATP, a co-neurotransmitter able to activate P2Y-Rs, suppressed both evoked and spontaneous exocytosis in distal and proximal parts. Surprisingly, inhibition of LTCCs (but not PKC) decreased the negative action of exogenous ATP on evoked (only in distal part) and spontaneous exocytosis. Lipid raft disruption suppressed (1) action of LTCC antagonist on neurotransmitter release selectively in distal region and (2) contribution of LTCCs in depressant effect of ATP on evoked and spontaneous release. Thus, LTCCs can enhance and desynchronize neurotransmitter release at basal conditions (without ATP addition), but contribute to ATP-mediated decrease in the exocytosis. The former action of LTCCs relies on P2Y-R/PKC axis, whereas the latter is triggered by exogenous ATP and PKC-independent. Furthermore, relevance of lipid rafts for LTCC function as well as LTCCs for ATP effects is different in distal and proximal part of the NMJ.
Collapse
Affiliation(s)
- A N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, Russia, 420111
| | - A M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, Russia, 420111.
- Kazan State Medial University, 49 Butlerova Street, Kazan, Russia, 420012.
| |
Collapse
|
6
|
Fagiani F, Govoni S, Racchi M, Lanni C. The Peptidyl-prolyl Isomerase Pin1 in Neuronal Signaling: from Neurodevelopment to Neurodegeneration. Mol Neurobiol 2020; 58:1062-1073. [PMID: 33083964 PMCID: PMC7878263 DOI: 10.1007/s12035-020-02179-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 is a unique enzyme catalyzing the isomerization of the peptide bond between phosphorylated serine-proline or threonine-proline motifs in proteins, thereby regulating a wide spectrum of protein functions, including folding, intracellular signaling, transcription, cell cycle progression, and apoptosis. Pin1 has been reported to act as a key molecular switch inducing cell-type-specific effects, critically depending on the different phosphorylation patterns of its targets within different biological contexts. While its implication in proliferating cells, and, in particular, in the field of cancer, has been widely characterized, less is known about Pin1 biological functions in terminally differentiated and post-mitotic neurons. Notably, Pin1 is widely expressed in the central and peripheral nervous system, where it regulates a variety of neuronal processes, including neuronal development, apoptosis, and synaptic activity. However, despite studies reporting the interaction of Pin1 with neuronal substrates or its involvement in specific signaling pathways, a more comprehensive understanding of its biological functions at neuronal level is still lacking. Besides its implication in physiological processes, a growing body of evidence suggests the crucial involvement of Pin1 in aging and age-related and neurodegenerative diseases, including Alzheimer's disease, Parkinson disease, frontotemporal dementias, Huntington disease, and amyotrophic lateral sclerosis, where it mediates profoundly different effects, ranging from neuroprotective to neurotoxic. Therefore, a more detailed understanding of Pin1 neuronal functions may provide relevant information on the consequences of Pin1 deregulation in age-related and neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, P.zza Vittoria, 15, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
7
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
8
|
Stallings NR, O'Neal MA, Hu J, Kavalali ET, Bezprozvanny I, Malter JS. Pin1 mediates Aβ 42-induced dendritic spine loss. Sci Signal 2018; 11:11/522/eaap8734. [PMID: 29559586 PMCID: PMC6136423 DOI: 10.1126/scisignal.aap8734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early-stage Alzheimer's disease is characterized by the loss of dendritic spines in the neocortex of the brain. This phenomenon precedes tau pathology, plaque formation, and neurodegeneration and likely contributes to synaptic loss, memory impairment, and behavioral changes in patients. Studies suggest that dendritic spine loss is induced by soluble, multimeric amyloid-β (Aβ42), which, through postsynaptic signaling, activates the protein phosphatase calcineurin. We investigated how calcineurin caused spine pathology and found that the cis-trans prolyl isomerase Pin1 was a critical downstream target of Aβ42-calcineurin signaling. In dendritic spines, Pin1 interacted with and was dephosphorylated by calcineurin, which rapidly suppressed its isomerase activity. Knockout of Pin1 or exposure to Aβ42 induced the loss of mature dendritic spines, which was prevented by exogenous Pin1. The calcineurin inhibitor FK506 blocked dendritic spine loss in Aβ42-treated wild-type cells but had no effect on Pin1-null neurons. These data implicate Pin1 in dendritic spine maintenance and synaptic loss in early Alzheimer's disease.
Collapse
Affiliation(s)
- Nancy R Stallings
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Melissa A O'Neal
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jie Hu
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Sosa LJ, Cáceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A. The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 2017; 143:11-29. [PMID: 28677143 DOI: 10.1111/jnc.14122] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell-surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over-expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition. Read the Editorial Highlight for this article on page 9. Cover Image for this issue: doi. 10.1111/jnc.13817.
Collapse
Affiliation(s)
- Lucas J Sosa
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Cáceres
- Laboratorio Neurobiología, Instituto Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Sebastián Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenarative Diseases, Bonn, Germany
| | - Mariana Oksdath
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Lorenzo
- Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|