1
|
Raina A, Wang W, Gonzalez JC, Yan X, Overstreet-Wadiche L, Wadiche JI, Zhang CL, Chen SG. Distinct alpha-synuclein strains derived from Parkinson's disease patient tissues trigger differential inclusion pathology in a novel biosensor cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646513. [PMID: 40236210 PMCID: PMC11996501 DOI: 10.1101/2025.04.01.646513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background α-Synuclein (αSyn) can misfold and aggregate to form fibrillar ß-sheet-rich aggregates ("strains") that are phosphorylated (p-αSyn) and deposited into intracellular inclusions in the brain, the pathological hallmark of synucleinopathies including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Previously, we reported that seed amplification assays such as real-time quaking-induced conversion (RT-QuIC) amplifies and detects αSyn strains from the patient skin. However, whether skin-derived αSyn strains induce disease-specific pathological features in a biological system is unknown. Methods We generated a U251 human glioblastoma cell line expressing fluorescently tagged αSyn carrying the PD-linked A53T mutation and Förster resonance energy transfer (FRET)-based U251 biosensor cells. Using fluorescence microscopy coupled with in situ detergent extraction, FRET-Flow cytometry and high-content confocal imaging, we examined the pathological burden and morphology of p-αSyn inclusions seeded by RT-QuIC-amplified patient skin and brain αSyn strains in αSyn-expressing U251 cells, FRET-based αSyn biosensor cells and αSyn biosensor cell-derived neurons. Results U251 cells allow robust and rapid in situ detection of detergent-insoluble intracellular αSyn inclusions triggered by exogenous αSyn seeds. In U251 FRET-based biosensor cells, PD skin-amplified strains induce a greater pathological burden and distinct p-αSyn inclusion morphology from PD brain-amplified and DLB skin-amplified strains. Inclusion morphology of DLB and MSA skin- and brain-amplified strains are comparable. Furthermore, skin-amplified αSyn strains induce neuronal inclusions and cause degeneration of induced neurons reprogrammed from the U251 biosensor cells. Finally, biosensor cell-propagated PD skin αSyn strains induce higher seeding activity measured by RT-QuIC than PD brain and DLB skin αSyn strains, linking intracellular pathological burden to in vitro seeding activity. Conclusions We report the detection of distinct PD strains derived from patient skin and brain tissues that trigger unique pathological phenotypes in U251 αSyn biosensor cells and cause degeneration of reprogrammed neurons from the same cell lineage. Moreover, DLB and MSA skin αSyn strains mimic pathological features of their brain αSyn strains in these biosensor cells. Therefore, the U251 αSyn biosensor cell model is a robust tool to potentially discriminate PD and DLB synucleinopathies and to study αSyn tissue- and strain-specific etiology and pathogenesis. Graphical abstract
Collapse
|
2
|
Sarriés-Serrano U, Miquel-Rio L, Santana N, Paz V, Sancho-Alonso M, Callado LF, Meana JJ, Bortolozzi A. Impaired unfolded protein response, BDNF and synuclein markers in postmortem dorsolateral prefrontal cortex and caudate nucleus of patients with depression and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111299. [PMID: 40015617 DOI: 10.1016/j.pnpbp.2025.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Major depressive disorder (MDD) is characterized by significant impairment in social, emotional, and cognitive functioning. Its precise pathophysiology remains poorly understood. Alterations in protein homeostasis and some misfolded proteins have been identified within the brains of patients diagnosed with neuropsychiatric disorders. In contrast to neurodegenerative processes such as Parkinson's disease (PD), where the accumulation of aggregated α-synuclein (α-Syn) protein is a primary cause of significant neuronal loss, altered proteostasis in MDD may result in loss-of-function effects by modifying synaptic neuroplasticity. Moreover, aberrant activation of endoplasmic reticulum (ER) pathways may intensify the pathological alterations due to altered proteostasis. In this study, dorsolateral prefrontal cortex (dlPFC) and caudate nucleus from MDD patients and non-psychiatric controls were used. Postmortem samples of same brain areas from PD patients (Braak 2-3 and 5-6) and controls were also included. Protein levels of ER and unfolded protein response (UPR), synucleins (α-, β- and γ-Syn), and brain-derived neurotrophic factor (BDNF) were measured by Western-Blot. Phospho-eIF2α/eIF2α ratio was increased in the dlPFC and caudate nucleus of MDD and PD patients compared to their respective controls. Brain area-dependent changes in BiP and GRP94 levels were also found. We further detected accumulation of immature BDNF precursors and opposite changes in α- and β-Syn levels in the dlPFC of MDD and PD patients compared to controls. Our findings suggest that alterations in proteostasis contribute to the pathophysiology of MDD, as previously described in PD. A deeper understanding of the pathways involved will identify other candidate proteins and new targets with therapeutic potential.
Collapse
Affiliation(s)
- Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Noemí Santana
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Luis F Callado
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - J Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Soni R, Shah J. Unveiling the significance of synaptic proteins in parkinson's pathogenesis: A review. Int J Biol Macromol 2025; 304:140789. [PMID: 39924013 DOI: 10.1016/j.ijbiomac.2025.140789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to death of dopaminergic neurons and deficiency of dopamine. It is the second most common neurodegenerative disorder worldwide after Alzheimer's disease (AD). It is mostly prevalent in elderly people above age 60. Clinical manifestations of PD include motor symptoms like tremor, akinesia, rigidity and gait imbalance; whereas non-motor symptoms include impaired olfaction and GI dysfunction. Α-synuclein is the major pathological hallmark of PD pathology. It aggregates and leads to formation of fibrils and Lewy bodies. It is a pre-synaptic protein that normally governs synaptic vesicle recycling. However, its aberration leads to its aggregation. There are several other synaptic proteins besides α-synuclein, and they might also have a pathological role. These synaptic proteins include synucleins (beta-synuclein, gamma-synuclein), synaptophysin, synaptobrevin, synaptogyrin, synaptotagmin and synaptojanin. In this review, we aim to explore underlying pathological role of these proteins. Clearer insights into the role of these synaptic proteins might aid in identifying newer targets which subsequently leads to development of novel therapeutics that target progression of the disease.
Collapse
Affiliation(s)
- Ritu Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
4
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Al-Gareeb AI, Albuhadily AK, Ali AA, Abu-Alghayth MH. Beyond amyloid plaque, targeting α-synuclein in Alzheimer disease: The battle continues. Ageing Res Rev 2025; 105:102684. [PMID: 39914501 DOI: 10.1016/j.arr.2025.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative brain disease and represents the most frequent type of dementia characterized by cognitive impairment and amnesia. AD neuropathology is connected to the development of synaptic dysfunction and loss of synaptic homeostasis due to an imbalance in the production and clearance of β-amyloid (Aβ) and intracellular neurofibrillary tangles (NFTs). However, AD neuropathology is complex and may relate to the deposition of other misfolded proteins, such as alpha-synuclein (α-Syn). Of note, α-Syn, which is involved in the pathogenesis of Parkinson disease (PD) and Lewy body (LB) dementia, is also implicated in AD neuropathology. However, the potential role of α-Syn in AD neuropathology is elusive. Therefore, this review aims to discuss the pathological role of α-Syn in AD and how targeting α-Syn aggregates may be effective in treating AD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14022, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Jabir ibn Hayyan Medical University, Kufa, Najaf 54001, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14022, Iraq
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| |
Collapse
|
5
|
Interneuronal In Vivo Transfer of Synaptic Proteins. Cells 2023; 12:cells12040569. [PMID: 36831238 PMCID: PMC9954582 DOI: 10.3390/cells12040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuron-to-neuron transfer of pathogenic α-synuclein species is a mechanism of likely relevance to Parkinson's disease development. Experimentally, interneuronal α-synuclein spreading from the low brainstem toward higher brain regions can be reproduced by the administration of AAV vectors encoding for α-synuclein into the mouse vagus nerve. The aim of this study was to determine whether α-synuclein's spreading ability is shared by other proteins. Given α-synuclein synaptic localization, experiments involved intravagal injections of AAVs encoding for other synaptic proteins, β-synuclein, VAMP2, or SNAP25. Administration of AAV-VAMP2 or AAV-SNAP25 caused robust transduction of either of the proteins in the dorsal medulla oblongata but was not followed by interneuronal VAMP2 or SNAP25 transfer and caudo-rostral spreading. In contrast, AAV-mediated β-synuclein overexpression triggered its spreading to more frontal brain regions. The aggregate formation was investigated as a potential mechanism involved in protein spreading, and consistent with this hypothesis, results showed that overexpression of β-synuclein, but not VAMP2 or SNAP25, in the dorsal medulla oblongata was associated with pronounced protein aggregation. Data indicate that interneuronal protein transfer is not a mere consequence of increased expression or synaptic localization. It is rather promoted by structural/functional characteristics of synuclein proteins that likely include their tendency to form aggregate species.
Collapse
|
6
|
Loss of the Synuclein Family Members Differentially Affects Baseline- and Apomorphine-Associated EEG Determinants in Single-, Double- and Triple-Knockout Mice. Biomedicines 2022; 10:biomedicines10123128. [PMID: 36551884 PMCID: PMC9775760 DOI: 10.3390/biomedicines10123128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Synucleins comprise a family of small proteins highly expressed in the nervous system of vertebrates and involved in various intraneuronal processes. The malfunction of alpha-synuclein is one of the key events in pathogenesis of Parkinson disease and certain other neurodegenerative diseases, and there is a growing body of evidence that malfunction of other two synucleins might be involved in pathological processes in the nervous system. The modulation of various presynaptic mechanisms of neurotransmission is an important function of synucleins, and therefore, it is feasible that their deficiency might affect global electrical activity detected of the brain. However, the effects of the loss of synucleins on the frequency spectra of electroencephalograms (EEGs) have not been systematically studied so far. In the current study, we assessed changes in such spectra in single-, double- and triple-knockout mice lacking alpha-, beta- and gamma-synucleins in all possible combinations. EEGs were recorded from the motor cortex, the putamen, the ventral tegmental area and the substantia nigra of 78 3-month-old male mice from seven knockout groups maintained on the C57BL/6J genetic background, and 10 wild-type C57BL/6J mice for 30 min before and for 60 min after the systemic injection of a DA receptor agonist, apomorphine (APO). We found that almost any variant of synuclein deficiency causes multiple changes in both basal and APO-induced EEG oscillation profiles. Therefore, it is not the absence of any particular synuclein but rather a disbalance of synucleins that causes widespread changes in EEG spectral profiles.
Collapse
|
7
|
Khaliq F, Oberhauser J, Wakhloo D, Mahajani S. Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen Res 2022; 18:1235-1242. [PMID: 36453399 PMCID: PMC9838151 DOI: 10.4103/1673-5374.355982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Machine learning represents a growing subfield of artificial intelligence with much promise in the diagnosis, treatment, and tracking of complex conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. While no definitive methods of diagnosis or treatment exist for either disease, researchers have implemented machine learning algorithms with neuroimaging and motion-tracking technology to analyze pathologically relevant symptoms and biomarkers. Deep learning algorithms such as neural networks and complex combined architectures have proven capable of tracking disease-linked changes in brain structure and physiology as well as patient motor and cognitive symptoms and responses to treatment. However, such techniques require further development aimed at improving transparency, adaptability, and reproducibility. In this review, we provide an overview of existing neuroimaging technologies and supervised and unsupervised machine learning techniques with their current applications in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Fariha Khaliq
- Department of Biomedical Engineering and Sciences (BMES), National University of Science and Technology, Islamabad, Pakistan,Correspondence to: Fariha Khaliq, ; Sameehan Mahajani, .
| | - Jane Oberhauser
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Debia Wakhloo
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sameehan Mahajani
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA,Correspondence to: Fariha Khaliq, ; Sameehan Mahajani, .
| |
Collapse
|
8
|
Sheta R, Teixeira M, Idi W, Pierre M, de Rus Jacquet A, Emond V, Zorca CE, Vanderperre B, Durcan TM, Fon EA, Calon F, Chahine M, Oueslati A. Combining NGN2 programming and dopaminergic patterning for a rapid and efficient generation of hiPSC-derived midbrain neurons. Sci Rep 2022; 12:17176. [PMID: 36229560 PMCID: PMC9562300 DOI: 10.1038/s41598-022-22158-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023] Open
Abstract
The use of human derived induced pluripotent stem cells (hiPSCs) differentiated to dopaminergic (DA) neurons offers a valuable experimental model to decorticate the cellular and molecular mechanisms of Parkinson's disease (PD) pathogenesis. However, the existing approaches present with several limitations, notably the lengthy time course of the protocols and the high variability in the yield of DA neurons. Here we report on the development of an improved approach that combines neurogenin-2 programming with the use of commercially available midbrain differentiation kits for a rapid, efficient, and reproducible directed differentiation of hiPSCs to mature and functional induced DA (iDA) neurons, with minimum contamination by other brain cell types. Gene expression analysis, associated with functional characterization examining neurotransmitter release and electrical recordings, support the functional identity of the iDA neurons to A9 midbrain neurons. iDA neurons showed selective vulnerability when exposed to 6-hydroxydopamine, thus providing a viable in vitro approach for modeling PD and for the screening of small molecules with neuroprotective proprieties.
Collapse
Affiliation(s)
- Razan Sheta
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Maxime Teixeira
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Marion Pierre
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, 2601, rue de La Canardière, Quebec City, Canada
| | - Aurelie de Rus Jacquet
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Vincent Emond
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
| | - Cornelia E. Zorca
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Benoît Vanderperre
- grid.38678.320000 0001 2181 0211Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC Canada ,Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Montreal, Canada
| | - Thomas M. Durcan
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A. Fon
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Frédéric Calon
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - Mohamed Chahine
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, 2601, rue de La Canardière, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
9
|
Increased Expression of Alpha-, Beta-, and Gamma-Synucleins in Brainstem Regions of a Non-Human Primate Model of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23158586. [PMID: 35955716 PMCID: PMC9369189 DOI: 10.3390/ijms23158586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, β-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.
Collapse
|
10
|
Liu DX, Zhao CS, Wei XN, Ma YP, Wu JK. Semaglutide Protects against 6-OHDA Toxicity by Enhancing Autophagy and Inhibiting Oxidative Stress. PARKINSON'S DISEASE 2022; 2022:6813017. [PMID: 35873704 PMCID: PMC9300292 DOI: 10.1155/2022/6813017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder for which no effective treatment is available. Studies have demonstrated that improving insulin resistance in type 2 diabetes mellitus (T2DM) can benefit patients with PD. In addition, a neuroprotective effect of glucagon-like peptide-1 (GLP-1) receptor agonists was demonstrated in experimental models of PD. In addition, there are some clinical trials to study the neuroprotective effect of GLP-1 analog on PD patients. Semaglutide is a long-acting, once-a-week injection treatment and the only available oral form of GLP-1 analog. In the present study, we treated the human neuroblastoma SH-SY5Y cell line with 6-hydroxydopamine (6-OHDA) as a PD in vitro model to explore the neuroprotective effects and potential mechanisms of semaglutide to protect against PD. Moreover, we compared the effect of semaglutide with liraglutide given at the same dose. We demonstrated that both semaglutide and liraglutide protect against 6-OHDA cytotoxicity by increasing autophagy flux and decreasing oxidative stress as well as mitochondrial dysfunction in SH-SY5Y cells. Moreover, by comparing the neuroprotective effects of semaglutide and liraglutide on PD cell models at the same dose, we found that semaglutide was superior to liraglutide for most parameters measured. Our results indicate that semaglutide, the new long-acting and only oral GLP-1 analog, may be represent a promising treatment for PD.
Collapse
Affiliation(s)
- Dong-xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Chen-sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Xiao-na Wei
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Yi-peng Ma
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Jian-kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Garg P, Maass F, Sundaram SM, Mollenhauer B, Mahajani S, van Riesen C, Kügler S, Bähr M. The relevance of synuclein autoantibodies as a biomarker for Parkinson's disease. Mol Cell Neurosci 2022; 121:103746. [PMID: 35660088 DOI: 10.1016/j.mcn.2022.103746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
Several studies have investigated if the levels of α-synuclein autoantibodies (α-syn AAb) differ in serum of Parkinson's disease (PD) patients and healthy subjects. Reproducible differences in their levels could serve as a biomarker for PD. The results of previous studies however remain inconclusive. With the largest sample size examined so far, we aimed to validate serum α-syn AAb levels as a biomarker for PD and investigated the presence of AAbs against other synucleins. We performed ELISA and immunoblots to determine synuclein AAb levels in the serum of 295 subjects comprising 157 PD patients from two independent cohorts, 46 healthy subjects, and 92 patients with other neurodegenerative disorders. Although serum α- and β-syn AAb levels were significantly reduced in patients with PD and other neurodegenerative disorders as compared to controls, the AAb levels displayed high inter-and intra-cohort variability. Furthermore, α-syn AAb levels showed no correlation to clinical parameters like age, disease duration, disease severity, and gender, that might also be directed against beta- and gamma-syn. In conclusion, serum synuclein AAb levels do allow the separation of PD from healthy subjects but not from other neurodegenerative disorders. Thus, synuclein AAbs cannot be regarded as a reliable biomarker for PD.
Collapse
Affiliation(s)
- Pretty Garg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073 Göttingen, Germany.
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Sivaraj M Sundaram
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Paracelsus-Elena-Klinik Kassel, Kassel, Germany
| | - Sameehan Mahajani
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neuropathology, Stanford University, California, USA
| | - Christoph van Riesen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Fan J, Wu D, Guo Y, Yang Z. SOS1-IT1 silencing alleviates MPP +-induced neuronal cell injury through regulating the miR-124-3p/PTEN/AKT/mTOR pathway. J Clin Neurosci 2022; 99:137-146. [PMID: 35279586 DOI: 10.1016/j.jocn.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Long non-coding RNA (lncRNA) has been found to be involved in the regulation of a variety of disease progression, including Parkinson's disease (PD). However, the role and underlying mechanism of SOS1 intronic transcript 1 (SOS1-IT1) in the progression of PD is still unclear. 1-methyl-4-phenyl pyridine (MPP+) induced SK-N-SH cells were used to construct PD cell models in vitro. The expression levels of SOS1-IT1, microRNA (miR)-124-3p and phosphatase and tensin homolog (PTEN) were determined using quantitative real-time PCR. Cell counting kit 8 assay and flow cytometry were used to measure cell viability and apoptosis. Western blot analysis was performed to detect protein expression. The levels of inflammation cytokines and oxidative stress markers were examined to assess cell inflammation and oxidative stress. In addition, dual-luciferase reporter assay, RIP assay and RNA pull-down assay were used to confirm RNA interaction. Our results showed that SOS1-IT1 was upregulated in MPP+-induced SK-N-SH cells, and its silencing reversed the inhibition effect of MPP+ on the viability and the promotion effect on the apoptosis, inflammation and oxidative stress of SK-N-SH cells. MiR-124-3p was targeted by SOS1-IT1, and its inhibitor reversed the suppressive effect of SOS1-IT1 knockdown on MPP+-induced SK-N-SH cell injury. Furthermore, PTEN was a target of miR-124-3p, and the reduction effect of miR-124-3p on MPP+-induced SK-N-SH cell injury was reversed by PTEN overexpression. Additionally, the activity of AKT/mTOR pathway was regulated by the SOS1-IT1/miR-124-3p/PTEN axis. In conclusion, SOS1-IT1 regulated the miR-124-3p/PTEN/AKT/mTOR pathway to participate in the regulation of MPP+-induced neuronal cell injury, indicating the SOS1-IT1 might be an effective therapeutic target for PD.
Collapse
Affiliation(s)
- Jianhu Fan
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Dahua Wu
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Yuxing Guo
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Zhongbao Yang
- Department of Pharmacy, The Affiliated Changsha Hospital of Human Normal University, Changsha, China
| |
Collapse
|
13
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|
14
|
Wang Y, Sun Z, Du S, Wei H, Li X, Li X, Shen J, Chen X, Cai Z. The increase of α-synuclein and alterations of dynein in A53T transgenic and aging mouse. J Clin Neurosci 2021; 96:154-162. [PMID: 34810061 DOI: 10.1016/j.jocn.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
The dynein protein plays a key role in the degradation pathway by attaching to targeted molecules and transporting the autophagosome to the centrosome. Aging plays an important role in the pathogenesis of Parkinson's disease (PD), but its effect on dynein is not clear. In this study we analyzed behavioral characteristics using the rod endurance test and climbing rod time test in different aged mice (3 months, 12 months, 20 months), and measured protein expression of dynein, α-synuclein, Tctex-1, and LC3 in the substantianigra of the mice by Western blot. The mRNA levels of dynein, α-synuclein, LC3 and Tctex-1 were measured by quantitative real time reverse transcription PCR, and detecting expression of dynein and α-synuclein by immunofluorescence. We found the motor functions of A53T mutant mice, in 12 months and 20 months, decreased more significantly compared with normal mice (p < 0.05). In addition, the expression of dynein, LC3-Ⅱ and Tctex-1 proteins in the substantia nigra of the two groups decreased with age. However, α-synuclein protein increased gradually with age, with significantly higher levels in the PD groups compared with age matched controls (p < 0.05). These results were confirmed by immunofluorescence. Our data demonstrates that dynein and other autophagy proteins change with age, and this is associated with increased α-synuclein. Therefore, therapeutics that prevent dynein dysfunction may offer novel treatments for PD and other autophagy related diseases.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Zhenjie Sun
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China; Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Shouyun Du
- Department of Neurology, Guanyun People's Hospital, Guanyun, China
| | - Hongyu Wei
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Xiuming Li
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaojing Li
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Jiahui Shen
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Xinya Chen
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Zenglin Cai
- Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China; Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China.
| |
Collapse
|
15
|
Chakrabarti S, Liu NJ, Gintzler AR. Relevance of Mu-Opioid Receptor Splice Variants and Plasticity of Their Signaling Sequelae to Opioid Analgesic Tolerance. Cell Mol Neurobiol 2021; 41:855-862. [PMID: 32804312 PMCID: PMC11448566 DOI: 10.1007/s10571-020-00934-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Opioid dose escalation to effectively control pain is often linked to the current prescription opioid abuse epidemic. This creates social as well as medical imperatives to better understand the mechanistic underpinnings of opioid tolerance to develop interventions that minimize it, thereby maximizing the analgesic effectiveness of opioids. Profound opioid analgesic tolerance can be observed in the absence of mu-opioid receptor (MOR) downregulation, aggregate MOR G protein uncoupling, and MOR desensitization, in the absence of impaired G protein coupled receptor kinase phosphorylation, arrestin binding, or endocytosis. Thus, we have explored alternative biochemical sequelae that might better account for opioid analgesic tolerance. Our findings indicate that substantial plasticity among upstream and downstream components of opioid receptor signaling and the emergence of alternative signaling pathways are major contributors to opioid analgesic tolerance. An exemplar of this plasticity is our findings that chronic morphine upregulates the MOR variants MOR-1B2 and MOR-1C1 and phosphorylation of their C-terminal sites not present in MOR-1, events causally associated with the chronic morphine-induced shift in MOR G protein coupling from predominantly Gi/Go inhibitory to Gs-stimulatory adenylyl cyclase signaling. The unique feature(s) of these variants that underlies their susceptibility to adapting to chronic morphine by altering the nature of their G protein coupling reveals the richness and pliability of MOR signaling that is enabled by generating a wide diversity of MOR variants. Furthermore, given differential anatomical expression patterns of MOR variants, MOR splice variant-dependent adaptations to chronic morphine could enable mechanistic underpinnings of tolerance and dependence that are CNS region- and cell-specific.
Collapse
Affiliation(s)
- Sumita Chakrabarti
- Department Obstetrics and Gynecology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Nai-Jiang Liu
- Department Obstetrics and Gynecology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Alan R Gintzler
- Department Obstetrics and Gynecology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| |
Collapse
|
16
|
Luise A, De Cecco E, Ponzini E, Sollazzo M, Mauri P, Sobott F, Legname G, Grandori R, Santambrogio C. Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry. Antioxidants (Basel) 2021; 10:antiox10060893. [PMID: 34206096 PMCID: PMC8226665 DOI: 10.3390/antiox10060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.
Collapse
Affiliation(s)
- Arianna Luise
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena De Cecco
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Martina Sollazzo
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - PierLuigi Mauri
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Frank Sobott
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
17
|
Guschina IA, Ninkina N, Roman A, Pokrovskiy MV, Buchman VL. Triple-Knockout, Synuclein-Free Mice Display Compromised Lipid Pattern. Molecules 2021; 26:3078. [PMID: 34064018 PMCID: PMC8196748 DOI: 10.3390/molecules26113078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson's disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.
Collapse
Affiliation(s)
- Irina A. Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Andrei Roman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Mikhail V. Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod State National Research University, 85 Pobedy Street, Belgorod 308015, Belgorod Oblast, Russia;
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|