1
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Shokr MM, Alexiou A, Papadakis M, Batiha GES. The janus face of astrocytes in multiple sclerosis: Balancing protection and pathology. Brain Res Bull 2025; 226:111356. [PMID: 40288545 DOI: 10.1016/j.brainresbull.2025.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS), predominantly affecting young adults with a notable female predominance. While the pathogenesis of MS involves complex interactions between peripheral immune cells and CNS glia, astrocytes-the most abundant glial cells-play a dual role in disease progression. Traditionally classified into pro-inflammatory A1 and neuroprotective A2 phenotypes, recent single-cell and spatial transcriptomics reveal that human astrocytes exhibit a continuum of states beyond this binary paradigm. In MS, reactive astrocytes contribute to neurotoxicity by disrupting the blood-brain barrier (BBB), promoting glutamate excitotoxicity, and presenting antigens to autoreactive T cells. Conversely, they also support repair through neurotrophic factor release (e.g., BDNF, CNTF) and remyelination. Emerging therapies like dimethyl fumarate (DMF) and fingolimod modulate astrocyte reactivity, targeting oxidative stress and sphingosine-1-phosphate receptors to mitigate neuroinflammation. However, challenges persist in translating murine A1/A2 concepts to human MS, as human astrocytes display heterogeneous, context-dependent responses influenced by regional microenvironments and disease stages. Advanced techniques, including spatial multi-omics, highlight astrocyte-microglia crosstalk and metabolic reprogramming as key drivers of MS pathology. This review synthesizes current evidence on astrocyte heterogeneity, their Janus-faced roles in MS, and the therapeutic potential of astrocyte-targeted strategies, advocating for precision approaches that account for human-specific astrocyte biology. Future research must priorities human-centric biomarkers and dynamic modelling to bridge the gap between experimental findings and clinical applications.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine Jabir ibn Hayyan Medical University, Al-Ameer Qu., Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Pinnetti C, Rozera G, Messina F, Spezia PG, Lazzari E, Fabeni L, Chillemi G, Pietrucci D, Haggiag S, Mastrorosa I, Vergori A, Girardi E, Antinori A, Maggi F, Abbate I. Cerebrospinal Fluid and Peripheral Blood Lymphomonocyte Single-Cell Transcriptomics in a Subject with Multiple Sclerosis Acutely Infected with HIV. Int J Mol Sci 2024; 25:10459. [PMID: 39408789 PMCID: PMC11476486 DOI: 10.3390/ijms251910459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Signatures of neurodegeneration in clinical samples from a subject with multiple sclerosis (MS) acutely infected with HIV were investigated with single-cell transcriptomics using 10X Chromium technology. Sequencing was carried out on NovaSeq-TM, and the analysis was performed with Cell Ranger software (v 7.1.0) associated with a specifically established bioinformatic pipeline. A total of 1446 single-cell transcriptomes in cerebrospinal fluid (CSF) and 4647 in peripheral blood mononuclear cells (PBMCs) were obtained. In the CSF, many T-cell lymphocytes with an enriched amount of plasma cells and plasmacytoid dendritic (pDC) cells, as compared to the PBMCs, were detected. An unsupervised cluster analysis, putting together our patient transcriptomes with those of a publicly available MS scRNA-seq dataset, showed up-regulated microglial neurodegenerative gene expression in four clusters, two of which included our subject's transcriptomes. A few HIV-1 transcripts were found only in the CD4 central memory T-cells of the CSF compartment, mapping to the gag-pol, vpu, and env regions. Our data, which describe the signs of neurodegenerative gene expression in a very peculiar clinical situation, did not distinguish the cause between multiple sclerosis and HIV infection, but they can give a glimpse of the high degree of resolution that may be obtained by the single-cell transcriptomic approach.
Collapse
Affiliation(s)
- Carmela Pinnetti
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (C.P.); (I.M.); (A.V.); (A.A.)
| | - Gabriella Rozera
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (E.L.); (L.F.); (F.M.); (I.A.)
| | - Francesco Messina
- Laboratory of Microbiology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (E.L.); (L.F.); (F.M.); (I.A.)
| | - Elisabetta Lazzari
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (E.L.); (L.F.); (F.M.); (I.A.)
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (E.L.); (L.F.); (F.M.); (I.A.)
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (G.C.); (D.P.)
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (G.C.); (D.P.)
| | - Shalom Haggiag
- Neurology Department, San Camillo Forlanini Hospital, 00152 Rome, Italy;
| | - Ilaria Mastrorosa
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (C.P.); (I.M.); (A.V.); (A.A.)
| | - Alessandra Vergori
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (C.P.); (I.M.); (A.V.); (A.A.)
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy;
| | - Andrea Antinori
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (C.P.); (I.M.); (A.V.); (A.A.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (E.L.); (L.F.); (F.M.); (I.A.)
| | - Isabella Abbate
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; (P.G.S.); (E.L.); (L.F.); (F.M.); (I.A.)
| |
Collapse
|
3
|
Imarisio A, Yahyavi I, Gasparri C, Hassan A, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Monti MC, Pacchetti C, Errico F, Rondanelli M, Usiello A, Valente EM. Serum dysregulation of serine and glycine metabolism as predictive biomarker for cognitive decline in frail elderly subjects. Transl Psychiatry 2024; 14:281. [PMID: 38982054 PMCID: PMC11233661 DOI: 10.1038/s41398-024-02991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Frailty is a common age-related clinical syndrome characterized by a decline in the function of multiple organ systems, increased vulnerability to stressors, and a huge socio-economic burden. Despite recent research efforts, the physiopathological mechanisms underlying frailty remain elusive and biomarkers able to predate its occurrence in the early stages are still lacking. Beyond its physical component, cognitive decline represents a critical domain of frailty associated with higher risk of adverse health outcomes. We measured by High-Performance Liquid Chromatography (HPLC) a pool of serum amino acids including L-glutamate, L-aspartate, glycine, and D-serine, as well as their precursors L-glutamine, L-asparagine, and L-serine in a cohort of elderly subjects encompassing the entire continuum from fitness to frailty. These amino acids are known to orchestrate excitatory and inhibitory neurotransmission, and in turn, to play a key role as intermediates of energy homeostasis and in liver, kidney, muscle, and immune system metabolism. To comprehensively assess frailty, we employed both the Edmonton Frail Scale (EFS), as a practical tool to capture the multidimensionality of frailty, and the frailty phenotype, as a measure of physical function. We found that D-serine and D-/Total serine ratio were independent predictors of EFS but not of physical frailty. Furthermore, higher levels of glycine, glycine/L-serine and D-/Total serine were associated with worse cognition and depressive symptoms in the frail group. These findings suggest that changes in peripheral glycine and serine enantiomers homeostasis may represent a novel biochemical correlate of frailty.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, Italy
| | - Amber Hassan
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
5
|
Husseini L, Geladaris A, Weber MS. Toward identifying key mechanisms of progression in multiple sclerosis. Trends Neurosci 2024; 47:58-70. [PMID: 38102058 DOI: 10.1016/j.tins.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
A major therapeutic goal in the treatment of multiple sclerosis (MS) is to prevent the accumulation of disability over an often decades-long disease course. Disability progression can result from acute relapses as well as from CNS intrinsic parenchymal disintegration without de novo CNS lesion formation. Research focus has shifted to progression not associated with acute inflammation, as it is not sufficiently controlled by currently available treatments. This review outlines how recent advances in the understanding of the pathogenesis of progressive MS have been facilitated by the development of more precise, less static pathogenetic concepts of progressive MS, as well as by new techniques for the analysis of region-specific proteomic and transcriptomic signatures in the human CNS. We highlight key drivers of MS disease progression and potential targets in its treatment.
Collapse
Affiliation(s)
- Leila Husseini
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany
| | - Martin S Weber
- Department of Neurology, University Medical Center, Göttingen, Germany; Institute of Neuropathology, University Medical Center, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, 37073 Göttingen, Germany.
| |
Collapse
|
6
|
Ortí JEDLR, Cuerda-Ballester M, Sanchis-Sanchis CE, Lajara Romance JM, Navarro-Illana E, García Pardo MP. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr 2023; 10:1227431. [PMID: 37693246 PMCID: PMC10485376 DOI: 10.3389/fnut.2023.1227431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals with MS frequently present symptoms such as functional disability, obesity, and anxiety and depression. Axonal demyelination can be observed and implies alterations in mitochondrial activity and increased inflammation associated with disruptions in glutamate neurotransmitter activity. In this context, the ketogenic diet (KD), which promotes the production of ketone bodies in the blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic alternative that has shown promising results in peripheral obesity reduction and central inflammation reduction. However, the association of this type of diet with emotional symptoms through the modulation of glutamate activity in MS individuals remains unknown. Aim To provide an update on the topic and discuss the potential impact of KD on anxiety and depression through the modulation of glutamate activity in subjects with MS. Discussion The main findings suggest that the KD, as a source of ketone bodies in the blood, improves glutamate activity by reducing obesity, which is associated with insulin resistance and dyslipidemia, promoting central inflammation (particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This improvement would imply a decrease in extrasynaptic glutamate activity, which has been linked to functional disability and the presence of emotional disorders such as anxiety and depression.
Collapse
Affiliation(s)
| | | | | | - Jose María Lajara Romance
- Faculty of Legal, Economic and Social Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
7
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
9
|
Lawrence AJ, Prado MA. Editorial: Exciting developments in neurochemistry research and publishing. J Neurochem 2022; 162:151-155. [PMID: 35524403 DOI: 10.1111/jnc.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
In this editorial, we are happy to connect with our community to explain the changes introduced to the Journal of Neurochemistry over the last year and provide some insights into new developments and exciting opportunities. We anticipate these developments, which are strongly guided to increase transparency and support early career researchers, will increase the value of the Journal of Neurochemistry for the authors and readers. Ultimately, we hope to improve the author experience with the Journal of Neurochemistry and continue to be the leading venue for fast dissemination of exciting new research focusing on how molecules, cells and circuits regulate the nervous system in health and disease.
Collapse
Affiliation(s)
- Andrew J Lawrence
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Marco A Prado
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|