1
|
van Kruining D, Losen M, Dehairs J, Swinnen JV, Waelkens E, Honing M, Martinez-Martinez P. Early plasma ceramide and sphingomyelin levels reflect APOE genotype but not familial Alzheimer's disease gene mutations in female 5xFAD mice, with brain-region specific sphingolipid alterations. Neurobiol Dis 2025; 210:106923. [PMID: 40253012 DOI: 10.1016/j.nbd.2025.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
Pathophysiological changes associated with Alzheimer's disease (AD) begin decades before dementia onset, with age and APOE ε4 genotype as major risk factors [1-4]. Primary risk factors for developing AD include aging and number of copies of the apolipoprotein E (APOE) ε4 allele. Altered sphingolipid metabolism is increasingly implicated in early AD. However, the relationship between early plasma and brain sphingolipid changes-particularly in the context of APOE genotype-remains poorly defined. In this study, we analyzed plasma and brain sphingolipid profiles in transgenic AD mice carrying human APOE3 or APOE4 variants, with or without familial AD mutations (E3FAD and E4FAD). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we assessed 110 sphingolipid species across four major classes (ceramides (Cers), hexosylceramides (HexCers), lactosylceramides (LacCers), and sphingomyelins (SMs)) at 2, 4, and 6 months in plasma and at 6 months in brain tissue in the cortex, hippocampus, striatum, and cerebellum. Our results demonstrate that early plasma sphingolipid alterations are largely driven by APOE genotype rather than AD pathology. Specifically, APOE4 carriers showed significant increases in SM species and reductions in Cer species compared to APOE3 carriers, independent of age or AD genotype. Brain lipid profiles showed minimal changes across genotypes after region correction. However, combined p-value analyses revealed APOE- and EFAD-dependent differences in the composition of primarily cortical sphingolipids. ROC analyses demonstrated high discriminative power of plasma sphingolipids for APOE, but not for AD genotype. These findings suggest that early plasma lipid profiles in female 5xFAD mice are more strongly influenced by APOE genotype than by overt AD pathology, potentially reflecting systemic pathways linked to APOE4-associated AD risk, while early disease-associated changes in the brain appear to be subtle and region-specific. These results underscore the importance of accounting for APOE genotype in early-stage AD lipidomic studies and in the interpretation of peripheral lipid biomarkers.
Collapse
Affiliation(s)
- Daan van Kruining
- School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Mario Losen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven 3000, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven 3000, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven 3000, Belgium
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging Institute (M4I), University of Maastricht, the Netherlands
| | - Pilar Martinez-Martinez
- School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Martínez-Gardeazabal J, Pereira-Castelo G, Moreno-Rodríguez M, Llorente-Ovejero A, Fernández M, Fernández-Vega I, Manuel I, Rodríguez-Puertas R. Sphingosine 1-phosphate receptor subtype 1 (S1P 1) activity in the course of Alzheimer's disease. Neurobiol Dis 2024; 202:106713. [PMID: 39448041 DOI: 10.1016/j.nbd.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Some specific lipid molecules in the brain act as signaling molecules, neurotransmitters, or neuromodulators, by binding to specific G protein-coupled receptors (GPCR) for neurolipids. One such receptor, sphingosine 1-phosphate receptor subtype 1 (S1P1), is coupled to Gi/o proteins and is involved in cell proliferation, growth, and neuroprotection. S1P1 constitutes an interesting target for neurodegenerative diseases like multiple sclerosis and Alzheimer's disease (AD), in which changes in the sphingolipid metabolism have been observed. This study analyzes S1P1 receptor-mediated activity in healthy brains and during AD progression using postmortem samples from controls and patients at different Braak's stages. Additionally, the distribution of S1P1 receptor activity in human brains is compared to that in commonly used rodent models, rats and mice, through functional autoradiography, measuring [35S]GTPγS binding stimulated by the S1P1 receptor selective agonist CYM-5442 to obtain the distribution of functional activity of S1P1 receptors. S1P1 receptor-mediated activity, along with that of the cannabinoid CB1 receptor, is one of the highest recorded for any GPCR in many gray matter areas of the brain, reaching maximum values in the cerebellar cortex, specific areas of the hippocampus and the basal forebrain. S1P1 signaling is crucial in areas that regulate learning, memory, motor control, and nociception, such as the basal forebrain and basal ganglia. In AD, S1P1 receptor activity is increased in the inner layers of the frontal cortex and underlying cortical white matter at early stages, but decreases in the hippocampus in advanced stages, indicating ongoing brain impairment. Importantly, we identified significant correlations between S1P1 receptor activity and Braak stages, suggesting that S1P1 receptor dysfunction is associated to disease progression, particularly in memory-related regions. The S1P signaling via S1P1 receptor is a promising neurological target due to its role in key neurophysiological functions and its potential to modify the progression of neurodegenerative diseases. Finally, rats are suggested as a preferred experimental model for studying S1P1 receptor-mediated responses in the human brain.
Collapse
Affiliation(s)
- Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| | - Gorka Pereira-Castelo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Manuel Fernández
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain; Department of Neurology, Hospital Universitario de Cruces, 48903 Barakaldo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Avda. Roma, s/n, 33011 Oviedo, Spain; Health Research Institute of Principality of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain.
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| |
Collapse
|
3
|
Hack W, Gladen-Kolarsky N, Chatterjee S, Liang Q, Maitra U, Ciesla L, Gray NE. Gardenin A treatment attenuates inflammatory markers, synuclein pathology and deficits in tyrosine hydroxylase expression and improves cognitive and motor function in A53T-α-syn mice. Biomed Pharmacother 2024; 173:116370. [PMID: 38458012 PMCID: PMC11017674 DOI: 10.1016/j.biopha.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6J mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced pSyn levels in both the cortex and hippocampus and attenuated the reduction in TH expression in the striatum seen in A53Tsyn mice. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models.
Collapse
Affiliation(s)
- Wyatt Hack
- Oregon Health & Science University, Neurology, Portland, United States
| | | | | | - Qiaoli Liang
- University of Alabama, Mass spectrometry facility, Chemistry and Biochemistry, Tuscaloosa, United States
| | - Urmila Maitra
- University of Alabama, Biological Sciences, Tuscaloosa, United States
| | - Lukasz Ciesla
- University of Alabama, Biological Sciences, Tuscaloosa, United States.
| | - Nora E Gray
- Oregon Health & Science University, Neurology, Portland, United States.
| |
Collapse
|
4
|
Brazdis RM, von Zimmermann C, Lenz B, Kornhuber J, Mühle C. Peripheral Upregulation of Parkinson's Disease-Associated Genes Encoding α-Synuclein, β-Glucocerebrosidase, and Ceramide Glucosyltransferase in Major Depression. Int J Mol Sci 2024; 25:3219. [PMID: 38542193 PMCID: PMC10970259 DOI: 10.3390/ijms25063219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme β-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| |
Collapse
|