1
|
Tong SK, Chang CY, Shih SW, Chua FZ, Hwang PP, Chou MY. Regulatory Role of Oxytocin in Ionocyte Functions During Zebrafish Cold Acclimation. FASEB J 2025; 39:e70587. [PMID: 40277309 DOI: 10.1096/fj.202500161r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Environmental temperatures substantially affect both endothermic and ectothermic vertebrates despite the two types of vertebrates having different adaptive strategies. Notably, the cellular and physiological mechanisms employed by ectothermic animals to cope with environmental changes remain poorly understood. Using zebrafish as a model, we investigated the detailed processes of cold acclimation in such fish. We analyzed the activation of oxytocin (OT) neurons and the release of peptide hormones into circulation within 3 h of cold exposure at 18°C, with this process followed by a dynamic downregulation at 24 h. Prolonged cold stress for 7 days resulted in a sustained reduction of plasma OT levels but a 30% increase in OT neuron numbers, which replenished the OT reservoir. We observed significant upregulation of RNA levels for proton ATPase (atp6v1aa) and epithelial calcium channel (trpv6) in the gills, indicating osmolarity acclimation by 7 days of cold exposure. Proton efflux was rapidly decreased within minutes of acute cold stress, but this reduction was mitigated by pretreatment with an OT agonist. Furthermore, OT was essential for the adaptive upregulation of ion-regulating genes (atp6v1aa and trpv6) during 7 days of cold acclimation. Although fundamental differences exist between endothermic and ectothermic animals, OT plays an evolutionarily conserved and pivotal role in cold acclimation, ensuring proper physiological adaptation to support survival under cold stress.
Collapse
Affiliation(s)
- Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Fang Zhi Chua
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Maciag M, Doszyn O, Wnorowski A, Zmorzynska J, Budzynska B. Exploring the impact of MDMA and oxytocin ligands on anxiety and social responses: A comprehensive behavioural and molecular study in the zebrafish model. J Psychopharmacol 2025; 39:373-393. [PMID: 40129049 DOI: 10.1177/02698811251324596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
BACKGROUND Mental disorders, including anxiety and depression, impact nearly 1 billion people worldwide. Recent research has highlighted the potential of certain amphetamine compounds in the therapy of psychiatric disorders, with 3,4-methylenedioxymethamphetamine (MDMA) emerging as a promising candidate. AIM This study investigates the effects of MDMA on anxiety and social behaviours using 3-week-old zebrafish. Additionally, the role of oxytocin in regulating these behaviours was examined through the use of an oxytocin receptor agonist (WAY-267,464) and antagonist (L-368,899). METHODS Behavioural effects were assessed using the novel exploration test, light-dark preference test and social preference test. To explore the underlying mechanisms, changes in gene expression in serotonin, oxytocin and vasopressin systems and changes in AKT and EKR1/2 signalling pathways were analysed. RESULTS Acute MDMA exposure reduced thigmotactic behaviour and increased the social preference index, indicating anxiolytic and prosocial effects. However, these effects were biphasic - the lowest tested dose of 0.5 μM showed anxiogenic and prosocial effects. As the concentration increased, these effects reversed, with a peak at 2.5 μM. MDMA suppressed the expression of serotonin receptors (htr1b and htr2b) and transporter (scl6a4) genes while increasing oxytocin receptors (oxtra and oxtrb) genes, decreasing vasopressin receptor (avpr1aa) gene expression, and reducing AKT phosphorylation. The oxytocin receptor agonist mimicked MDMA's effects, while the antagonist had no significant effect on anxiety or social behaviour. CONCLUSIONS MDMA demonstrates therapeutic potential for treating anxiety disorders and social impairments. Moreover, 3-week-old zebrafish proved to be a valuable model for neurobehavioural research and high-throughput screening of psychiatric treatments.
Collapse
Affiliation(s)
- Monika Maciag
- Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | - Olga Doszyn
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Budzynska
- Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Taha OT, Ghoneim HM, Marzouk T, Ali TYM. Association between placental site and successful induction of labor among postdate primiparous women. Arch Gynecol Obstet 2025; 311:661-667. [PMID: 39592471 PMCID: PMC11919931 DOI: 10.1007/s00404-024-07765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/23/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE This study aimed to determine the association between placental site and successful labor induction. METHODS This cross-sectional study recruited all postdate primiparous women undergoing induction of labor. Eligible women were subjected to proper history taking and clinical examination. Vaginal examination to determine the bishop score was done. Routine antenatal scan was done for fetal biometry and the placental site. Transvaginal ultrasound was done for cervical length assessment. Induction of labor was commenced and women were subdivided into those with successful induction (delivered vaginally) and those with failed induction (needed cesarean delivery). RESULTS Successful induction was achieved in 73/91 (80.2%) participants. The bishop score was significantly increased among women with successful induction (4.6 ± 0.9 vs 3.9 ± 1.1, p value 0.014). In addition, the cervical length was significantly shorter among those who delivered vaginally (2.6 ± 0.5 vs 4.2 ± 0.5, p value 0.0001). There was no significant difference in the placental site among women with failed or successful induction. The cervical length was the only significant predictor for successful induction of labor (p value 0.0001). The placental site showed a non-significant role in the prediction of successful vaginal delivery (p value 0.280). CONCLUSION The placental site is not associated with the outcome of labor induction. The cervical length was the significant predictor for successful induction of labor.
Collapse
Affiliation(s)
- Omima T Taha
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Hanan M Ghoneim
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Tyseer Marzouk
- College of Applied Medical Science, University of Bisha, Bisha, Kingdom of Saudi Arabia
- Department of Woman's Health and Midwifery Nursing, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Tamer Yehia M Ali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Aksoy SD, Yel SY, Akyildiz D. The Effect of Maternal Oxytocin Induction during Birth on Early Neonatal Pain and Stress: A Quasi-Experimental Study. Biol Res Nurs 2025; 27:101-108. [PMID: 39370412 PMCID: PMC11555906 DOI: 10.1177/10998004241289896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
OBJECTIVE Oxytocin induction is a commonly used intervention during childbirth worldwide. This study aimed to compare the pain and stress levels of newborns born to mothers who administered synthetic oxytocin at birth with those who did not. METHODS This quasi-experimental study included 164 participants and their newborns who were delivered vaginally in a public hospital. The data were collected using an Information Form, a Neonatal Follow-Up Form, and the Assessment of Neonatal Pain and Stress Scale (ALPS-Neo). RESULTS In the study, there were no differences between the two groups in terms of the participants' and newborns' demographic characteristics (p > .05). During and after drying, before, during, and after the first injection, and before, during, and after blood glucose measurement, the mean ALPS-Neo scores were higher in the oxytocin induction group, with the difference being statistically significant (p < .001). CONCLUSION Although the data presented here are observational, the findings indicate that infants born to participants who underwent oxytocin induction exhibit more intense pain and stress responses. The pain-stress scores of newborns born to participants who underwent oxytocin induction were higher than those of newborns whose mothers did not receive oxytocin induction.
Collapse
Affiliation(s)
- Sena D. Aksoy
- Department of Midwifery, Faculty of Health Science, Kocaeli University, Kocaeli, Türkiye
| | - Seda Y. Yel
- Darica Farabi Training and Research Hospital, Kocaeli, Türkiye
| | - Deniz Akyildiz
- Deparment of Midwifery, Faculty of Health Science, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| |
Collapse
|
6
|
Allen Wild C, Yon L. Commentary on the Adaptive Significance of Sociality Around Parturition Events, and Conspecific Support of Parturient Females in Some Social Mammals. Animals (Basel) 2024; 14:3601. [PMID: 39765505 PMCID: PMC11672776 DOI: 10.3390/ani14243601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
In recent decades, it has become apparent that during parturition events in a number of social mammals, social support behaviours from group mates can be directed to parturient females (and their newborn neonates). Such behaviour has been documented in diverse taxa, across non-human primates, Elephantidae, Cetacea, and Chiroptera, living in a range of social group organisations, from matrilineal groups to cooperatively breeding groups and multi-male, multi-female groups. Since sociality, in association with parturition, has been demonstrated to confer several health benefits to human mothers and neonates, here, we also consider the potential adaptive significance of social support behaviours for other, non-human, social mammals. If appropriate social environments reduce a parturient female's dystocia risk and improve her responsiveness to her neonate following a successful birth, then the impacts of the peri-parturient social environment may ultimately have far-reaching impacts on the mother-neonate dyad's fitness. This seems a logical sequela since the health condition of a neonate at birth and the successful establishment of a strong maternal-neonate bond are often the most critical factors influencing mammalian offspring survival to independence. The principles of kin selection and alliance enhancement may serve to explain the fitness benefits to individuals who support group mates during their parturition and thus the selective advantage conferred to those exhibiting such behaviours. Older, multiparous females appear to hold a particularly important role in the assistance they can provide during the parturition of their group mates, given their greater level of experience of these events. Furthermore, a social birth may have an important influence on horizontal information transfer within a group. In particular, in long-lived, cognitively advanced social mammals (e.g., non-human primates, Elephantidae, Cetacea), witnessing birth events, early neonate responses, and maternal care, and engaging in allomaternal care with young neonates may be essential for nulliparous females' normal development. Such events may serve to prepare them for their own parturition and may improve their own parturition-related survivorship and that of their first-born offspring. Thus, it is vital that a better understanding is gained of the importance and salient features of social births in improving the health and survivorship outcomes for both the mother and her offspring in highly social species. The aim of this commentary is to assemble our current understanding of these highly interconnected themes. We suggest in the future, insights gained through observation of non-human social parturition in domestic and non-domestic species, by a wide and highly interdisciplinary range of stakeholders (including zookeepers, wildlife tourism guides, breeders of domestic animals, indigenous people, and ethologists), will be critical for enhancing our understanding of the influence of social environment on this rarely witnessed, yet highly important life event.
Collapse
Affiliation(s)
- Connie Allen Wild
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Lisa Yon
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK;
- Elephant Welfare International, 35-37 Ludgate Hill, London EX4 4QG, UK
| |
Collapse
|
7
|
Kaur S, Markwei MT, Shaw KA. Management of blood loss in second-trimester abortion. Curr Opin Obstet Gynecol 2024; 36:408-413. [PMID: 39361337 DOI: 10.1097/gco.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
PURPOSE OF REVIEW While major complications in second-trimester abortion are rare, blood loss and hemorrhage are among the most common and have the potential for high morbidity. Here, we review the current literature on risk factors, prevention, and treatment of blood loss in second-trimester abortion. RECENT FINDINGS A comprehensive approach to hemorrhage during second-trimester abortions is essential. Understanding hemorrhage risk factors, prevention strategies, and treatment options makes second-trimester abortion safer. Some pharmacologic methods may both prevent and treat excessive blood loss. Mechanical methods are primarily used for treatment. Key risk factors include prior uterine scars, gestational duration, insufficient cervical preparation, high BMI, procedural inexperience, fetal demise, and halogenated anesthetics. Developing evidence-based protocols for and further research into hemorrhage related complications are crucial for improving safety in second-trimester abortion care. SUMMARY Prevention of hemorrhage improves outcomes. However data are limited. For treatment, this includes using pharmacological interventions and mechanical methods. Identifying high-risk patients and implementing preprocedural optimization are proactive measures that aid in decreasing the occurrence and severity of blood loss and hemorrhage.
Collapse
Affiliation(s)
- Simranvir Kaur
- Stanford University, School of Medicine, Department of Obstetrics and Gynecology, Family Planning Services and Research, Palo Alto, California, USA
| | | | | |
Collapse
|
8
|
Pampanella L, Petrocelli G, Forcellini F, Cruciani S, Ventura C, Abruzzo PM, Facchin F, Canaider S. Oxytocin, the Love Hormone, in Stem Cell Differentiation. Curr Issues Mol Biol 2024; 46:12012-12036. [PMID: 39590307 PMCID: PMC11592854 DOI: 10.3390/cimb46110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body. In this review, we focused on the role of OXT in SC differentiation. Specifically, we summarize and discuss the scientific research examining the effects of OXT on mesodermal SC-derived lineages, including cardiac, myogenic, adipogenic, osteogenic, and chondrogenic differentiation. The available studies related to the effects of OXT on SC differentiation provide little insights about the molecular mechanism mediated by the OXT-OXTR pathway. Further research is needed to fully elucidate these pathways to effectively modulate SC differentiation and develop potential therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Forcellini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems (NIBB), Via di Corticella 183, 40129 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
9
|
Danoff JS, Lillard TS, Myatt L, Connelly JJ, Erickson EN. A Common OXTR Risk Variant Alters Regulation of Gene Expression by DNA Hydroxymethylation in Pregnant Human Myometrium. Reprod Sci 2024; 31:3132-3138. [PMID: 38862858 PMCID: PMC11438727 DOI: 10.1007/s43032-024-01621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Postpartum hemorrhage, or excessive bleeding after birth, is a leading cause of maternal morbidity. A major cause of postpartum hemorrhage is uterine atony, tiring of the uterus which leads to ineffective contractions. Uterine contractions depend on oxytocin signaling in the myometrium, which in turn depends on expression of the oxytocin receptor (OXTR). Both genetic and epigenetic factors related to the oxytocin receptor are associated with risk of postpartum hemorrhage, but a mechanism relating these factors to oxytocin receptor activity in myometrium remains unclear. We report a genetic by epigenetic interaction whereby the relationship between DNA hydroxymethylation and OXTR gene expression depends on a common OXTR gene variant (rs53576). We also provide evidence that a similar genetic by epigenetic interaction using blood-derived DNA methylation is associated with relevant clinical outcomes: quantity of oxytocin administration and odds for postpartum hemorrhage. These results provide new avenues for predicting how women will respond to pharmacological agents in the prevention and treatment of postpartum hemorrhage.
Collapse
Affiliation(s)
- Joshua S Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
10
|
Lammers SM, Peczkowski KK, Patel N, Abdelwahab M, Summerfield TL, Costantine MM, Janssen PML, Kniss DA, Frey HA. Maternal Body Mass Index, Myometrium Contractility and Uterotonic Receptor Expression in Pregnancy. Reprod Sci 2024; 31:3016-3025. [PMID: 39060750 PMCID: PMC11438831 DOI: 10.1007/s43032-024-01661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pregnant individuals with obesity (body mass index, BMI ≥ 30 kg/m2) are more likely to experience prolonged labor and have double the risk of cesarean compared with individuals with normal weight (BMI < 25 kg/m2). The aim of this study was to evaluate whether obesity in pregnancy is associated with reduced spontaneous and oxytocin-stimulated myometrial contractile activity using ex vivo preparations. We also assessed the relationship between maternal BMI and the expression of oxytocin (OXTR) and prostaglandin (FP) receptors in the myometrial tissue. We enrolled 73 individuals with a singleton gestation undergoing scheduled cesarean delivery at term in a prospective cohort study. This included 49 individuals with a pre-pregnancy BMI ≥ 30 kg/m2 and 24 with BMI < 25.0 kg/m2. After delivery, a small strip of myometrium was excised from the upper edge of the hysterotomy. Baseline spontaneous and oxytocin stimulated myometrial contractile activity was measured using ex vivo preparations. Additionally, expression of oxytocin and prostaglandin receptors from myometrial samples were compared using qRT-PCR and western blot techniques. Spontaneous and oxytocin-stimulated contraction frequency, duration, and force were not significantly different in myometrial samples from the obese and normal-weight individuals. Myometrial OXTR gene and protein expression was also similar in the two groups. While FP gene expression was lower in the myometrial samples from the obese group, protein expression did not differ. These data help to address an important knowledge gap related to the biological mechanisms underlying the association between maternal obesity and dysfunctional labor.
Collapse
Affiliation(s)
- Sydney M Lammers
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Kyra K Peczkowski
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, OH, USA
| | - Niharika Patel
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Mahmoud Abdelwahab
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Taryn L Summerfield
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, OH, USA
| | - Douglas A Kniss
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
- Laboratory of Perinatal Research, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Heather A Frey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA.
| |
Collapse
|
11
|
Zurfluh L, Duvaud L, Inci N, Potterat O, Simões-Wüst AP, Mosbacher J. Bryophyllum pinnatum Inhibits Oxytocin and Vasopressin Signaling in Myometrial Cells. PLANTA MEDICA 2024; 90:757-765. [PMID: 38599625 DOI: 10.1055/a-2303-9608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The medicinal plant Bryophyllum pinnatum was previously shown to block oxytocin (OT)-induced signals in myometrial cells, consistent with its tocolytic effect observed in patients. OT activates not only OT receptors but also V1A receptors, two receptors with high receptor homology that are both expressed in the myometrium and play a crucial role in myometrial contraction signaling. We aimed to study the molecular pharmacology of B. pinnatum herbal preparations using specific receptor ligands, the human myometrial cell line hTERT-C3, and cell lines expressing recombinant human OT and V1A receptors.We found that press juice from B. pinnatum (BPJ) inhibits both OT- and vasopressin (AVP)-induced intracellular calcium increases in hTERT-C3 myometrial cells. In additional assays performed with cells expressing recombinant receptors, BPJ also inhibited OT and V1A receptor-mediated signals with a similar potency (IC50 about 0.5 mg/mL). We further studied endogenous OT- and AVP-sensitive receptors in hTERT-C3 cells and found that OT and AVP stimulated those receptors with similar potency (EC50 of ~ 1 nM), suggesting expression of both receptor subtypes. This interpretation was corroborated by the antagonist potencies of atosiban and relcovaptan that we found. However, using qPCR, we almost exclusively found expression of OT receptors suggesting a pharmacological difference between recombinant OT receptors and native receptors expressed in hTERT-C3 cells.In conclusion, we show that B. pinnatum inhibits both OT and AVP signaling, which may point beyond its tocolytic effects to other indications involving a disbalance in the vasopressinergic system.
Collapse
Affiliation(s)
- Leonie Zurfluh
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lauriane Duvaud
- Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Nejla Inci
- Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, University of Basel, Basel, Switzerland
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Mosbacher
- Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| |
Collapse
|
12
|
Lin PW, Chern CU, Li CJ, Lin PH, Tsui KH, Lin LT. Improvement of early miscarriage rates in women with adenomyosis via oxytocin receptor antagonist during frozen embryo transfer-a propensity score-matched study. Reprod Biol Endocrinol 2024; 22:79. [PMID: 38997744 PMCID: PMC11241821 DOI: 10.1186/s12958-024-01255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Dysfunctional uterine peristalsis seems to play a pivotal role in hindering embryo implantation among women diagnosed with adenomyosis. This research aims to investigate whether administering an oxytocin receptor antagonist during a frozen embryo transfer (FET) cycle using a hormone replacement therapy (HRT) protocol can enhance in vitro fertilization (IVF) outcomes for infertile women affected by adenomyosis. METHODS Between January 2018 and June 2022, our reproductive center conducted IVF-FET HRT cycles for infertile women diagnosed with adenomyosis. Propensity score matching was employed to select matched subjects between the two groups in a 1:1 ratio. Following this, 168 women received an oxytocin receptor antagonist during FET, constituting the study group, while the matched 168 women underwent FET without this antagonist, forming the control group. We conducted comparative analyses of baseline and cycle characteristics between the two groups, along with additional subgroup analyses. RESULTS The study group exhibited notably lower rates of early miscarriage compared to the control group, although there were no significant differences in clinical pregnancy rates, ongoing pregnancy rates, and live birth rates between the two groups. Multivariate analysis revealed a negative correlation between the use of oxytocin receptor antagonists and early miscarriage rates in women with adenomyosis. Subgroup analyses, categorized by age, infertility types, and embryo transfer day, showed a substantial decrease in early miscarriage rates within specific subgroups: women aged ≥ 37 years, those with secondary infertility, and individuals undergoing day 3 embryo transfers in the study group compared to the control group. Furthermore, subgroup analysis based on adenomyosis types indicated significantly higher clinical pregnancy rates, ongoing pregnancy rates and live birth rates in the study group compared to the control group among women with diffuse adenomyosis. CONCLUSIONS Administering an oxytocin receptor antagonist during FET may reduce the early miscarriage rates in women with adenomyosis.
Collapse
Affiliation(s)
- Po-Wen Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Kaohsiung City, Zuoying Dist, 81362, Taiwan
| | - Chyi-Uei Chern
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Kaohsiung City, Zuoying Dist, 81362, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Kaohsiung City, Zuoying Dist, 81362, Taiwan
| | - Pei-Hsuan Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Kaohsiung City, Zuoying Dist, 81362, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Kaohsiung City, Zuoying Dist, 81362, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Kaohsiung City, Zuoying Dist, 81362, Taiwan.
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan.
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung City, Taiwan.
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan.
| |
Collapse
|
13
|
Hashitani H, Takeya M, van Helden DF. Commonality and heterogeneity of pacemaker mechanisms in the male reproductive organs. J Physiol 2024. [PMID: 38607187 DOI: 10.1113/jp284756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
During emission, the first phase of ejaculation, smooth muscle in organs of the male reproductive tract (MRT) vigorously contract upon sympathetic nerve excitation to expel semen consisting of sperm and seminal plasma. During inter-ejaculation phases, the epididymis, seminal vesicles and prostate undergo spontaneous phasic contractions (SPCs), this transporting and maintaining the quality of sperm and seminal plasma. Recent studies have revealed platelet-derived growth factor receptor α-expressing (PDGFRα+) subepithelial interstitial cells in seminal vesicles subserve the role of pacemaker cells that electrically drive SPCs in this organ. PDGFRα+ smooth muscle cells in the epididymis also appear to function as pacemaker cells implicating PDGFRα as a potential signature molecule in MRT pacemaking. The dominant mechanism driving pacemaking in these organs is the cytosolic Ca2+ oscillator. This operates through entrainment of the release-refill cycle of Ca2+ stores, the released Ca2+ ions opening Ca2+-activated chloride channels, including in some cases ANO1 (TMEM16A), with the resultant pacemaker potential activating L-type voltage-dependent Ca2+ channels in the smooth muscle causing contraction (viz. SPCs). A second pacemaker mechanism, namely the membrane oscillator also has a role in specific cases. Further investigations into the commonality and heterogeneity of MRT pacemakers will open an avenue for understanding the pathogenesis of male infertility associated with deterioration of seminal plasma.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mitsue Takeya
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, Faculty of Health, Medicine and Wellbeing & Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
14
|
Wrobel MH, Mlynarczuk J, Rekawiecki R. Effects of commonly used carbamates (carbaryl and thiram) on the regulatory, secretory and motor functions of bovine cervixes in vitro. Theriogenology 2024; 218:183-192. [PMID: 38330862 DOI: 10.1016/j.theriogenology.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Previously studied classes of pesticides, including organochlorines, organophosphates and pyrethroids disturb the mechanism that causes bovine myometrial contractions. Hence, the aim of this study was to investigate the effects of carbaryl and thiram, which are representative carbamate pesticides commonly used in global agriculture, on the motor and secretory functions of bovine cervixes. Additionally, the impacts of these pesticides on intra- and intercellular signaling in vitro were estimated. In this study, cervical cells or strips were obtained from cows at days 18-20 of the estrous cycle and were treated with carbaryl or thiram. Neither carbamate (10 or 100 ng/ml) exerted cytotoxic effects. Carbaryl increased the level of mRNA (at a dose of 0.1 ng/ml) and protein (at both doses, 1 and 10 ng/ml) expression for the oxytocin receptor (OXTR), while thiram (at 0.1 and 10 ng/ml or 0.1-10 ng/ml, respectively) caused the opposite effects. Moreover, the level of the second messenger inositol-trisphosphate (IP3) was decreased by carbaryl (10 ng/ml) but increased by thiram (10 ng/ml). Only thiram decreased prostaglandin-endoperoxide synthase 2 (PTGS2; 0.1 ng/ml) and aldo-keto reductase family 1, member B1 (AKR1B1; 0.1 ng/ml), and prostaglandin E synthase 2 (PTGES2; 0.1-10 ng/ml) mRNA expression, while thiram (0.1-10 ng/ml) and carbaryl (0.1 and 10 ng/ml) both decreased the release of PGF2α. Carbaryl (10 ng/ml) and thiram (10 ng/ml) also decreased the level of a gap junction protein (GAP). Moreover, carbaryl (10 ng/ml) decreased the level of myosin light chain kinase (MLCK). However, the strength of cervical contractions was increased by thiram (1 and 10 ng/ml) but decreased by carbaryl (1 and 10 ng/ml). Carbaryl increased the receptivity of cervical cells to oxytocin (OXT), but inhibited further transduction (IP3) of this signal. Hence, direct inhibition of cervical strip contraction may occur. In contrast, thiram mostly decreased the receptivity of cervical cells to OXT, while it stimulated the contraction of cervical strips. Moreover, compared to carbaryl, thiram more greatly affected the synthesis and release of prostaglandins. These results suggest that carbaryl and thiram disturb OXT signaling, PG secretion and cervical contraction in vitro.
Collapse
Affiliation(s)
- Michal Hubert Wrobel
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland.
| | - Jaroslaw Mlynarczuk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Robert Rekawiecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| |
Collapse
|
15
|
Flis W, Socha MW. The Role of the NLRP3 Inflammasome in the Molecular and Biochemical Mechanisms of Cervical Ripening: A Comprehensive Review. Cells 2024; 13:600. [PMID: 38607039 PMCID: PMC11012148 DOI: 10.3390/cells13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The uterine cervix is one of the key factors involved in ensuring a proper track of gestation and labor. At the end of the gestational period, the cervix undergoes extensive changes, which can be summarized as a transformation from a non-favorable cervix to one that is soft and prone to dilation. During a process called cervical ripening, fundamental remodeling of the cervical extracellular matrix (ECM) occurs. The cervical ripening process is a derivative of many interlocking and mutually driving biochemical and molecular pathways under the strict control of mediators such as inflammatory cytokines, nitric oxide, prostaglandins, and reactive oxygen species. A thorough understanding of all these pathways and learning about possible triggering factors will allow us to develop new, better treatment algorithms and therapeutic goals that could protect women from both dysfunctional childbirth and premature birth. This review aims to present the possible role of the NLRP3 inflammasome in the cervical ripening process, emphasizing possible mechanisms of action and regulatory factors.
Collapse
Affiliation(s)
- Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
16
|
Sanchez-Ramos L, Levine LD, Sciscione AC, Mozurkewich EL, Ramsey PS, Adair CD, Kaunitz AM, McKinney JA. Methods for the induction of labor: efficacy and safety. Am J Obstet Gynecol 2024; 230:S669-S695. [PMID: 38462252 DOI: 10.1016/j.ajog.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 03/12/2024]
Abstract
This review assessed the efficacy and safety of pharmacologic agents (prostaglandins, oxytocin, mifepristone, hyaluronidase, and nitric oxide donors) and mechanical methods (single- and double-balloon catheters, laminaria, membrane stripping, and amniotomy) and those generally considered under the rubric of complementary medicine (castor oil, nipple stimulation, sexual intercourse, herbal medicine, and acupuncture). A substantial body of published reports, including 2 large network meta-analyses, support the safety and efficacy of misoprostol (PGE1) when used for cervical ripening and labor induction. Misoprostol administered vaginally at doses of 50 μg has the highest probability of achieving vaginal delivery within 24 hours. Regardless of dosing, route, and schedule of administration, when used for cervical ripening and labor induction, prostaglandin E2 seems to have similar efficacy in decreasing cesarean delivery rates. Globally, although oxytocin represents the most widely used pharmacologic agent for labor induction, its effectiveness is highly dependent on parity and cervical status. Oxytocin is more effective than expectant management in inducing labor, and the efficacy of oxytocin is enhanced when combined with amniotomy. However, prostaglandins administered vaginally or intracervically are more effective in inducing labor than oxytocin. A single 200-mg oral tablet of mifepristone seems to represent the lowest effective dose for cervical ripening. The bulk of the literature assessing relaxin suggests this agent has limited benefit when used for this indication. Although intracervical injection of hyaluronidase may cause cervical ripening, the need for intracervical administration has limited the use of this agent. Concerning the vaginal administration of nitric oxide donors, including isosorbide mononitrate, isosorbide, nitroglycerin, and sodium nitroprusside, the higher incidence of side effects with these agents has limited their use. A synthetic hygroscopic cervical dilator has been found to be effective for preinduction cervical ripening. Although a pharmacologic agent may be administered after the use of the synthetic hygroscopic dilator, in an attempt to reduce the interval to vaginal delivery, concomitant use of mechanical and pharmacologic methods is being explored. Combining the use of a single-balloon catheter with dinoprostone, misoprostol, or oxytocin enhances the efficacy of these pharmacologic agents in cervical ripening and labor induction. The efficacy of single- and double-balloon catheters in cervical ripening and labor induction seems similar. To date, the combination of misoprostol with an intracervical catheter seems to be the best approach when balancing delivery times with safety. Although complementary methods are occasionally used by patients, given the lack of data documenting their efficacy and safety, these methods are rarely used in hospital settings.
Collapse
Affiliation(s)
- Luis Sanchez-Ramos
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Florida College of Medicine, Jacksonville, FL.
| | - Lisa D Levine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA
| | - Anthony C Sciscione
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Christiana Hospital, Newark, DE
| | - Ellen L Mozurkewich
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, NM
| | - Patrick S Ramsey
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, TX
| | - Charles David Adair
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN
| | - Andrew M Kaunitz
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Jacksonville, FL
| | - Jordan A McKinney
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Jacksonville, FL
| |
Collapse
|
17
|
Hermesch AC, Kernberg AS, Layoun VR, Caughey AB. Oxytocin: physiology, pharmacology, and clinical application for labor management. Am J Obstet Gynecol 2024; 230:S729-S739. [PMID: 37460365 DOI: 10.1016/j.ajog.2023.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 03/12/2024]
Abstract
Oxytocin is a peptide hormone that plays a key role in regulating the female reproductive system, including during labor and lactation. It is produced primarily in the hypothalamus and secreted by the posterior pituitary gland. Oxytocin can also be administered as a medication to initiate or augment uterine contractions. To study the effectiveness and safety of oxytocin, previous studies have randomized patients to low- and high-dose oxytocin infusion protocols either alone or as part of an active management of labor strategy along with other interventions. These randomized trials demonstrated that active management of labor and high-dose oxytocin regimens can shorten the length of labor and reduce the incidence of clinical chorioamnionitis. The safety of high-dose oxytocin regimens is also supported by no associated differences in fetal heart rate abnormalities, postpartum hemorrhage, low Apgar scores, neonatal intensive care unit admissions, and umbilical artery acidemia. Most studies reported no differences in the cesarean delivery rates with active management of labor or high-dose oxytocin regimens, thereby further validating its safety. Oxytocin does not have a predictable dose response, thus the pharmacologic effects and the amplitude and frequency of uterine contractions are used as physiological parameters for oxytocin infusion titration to achieve adequate contractions at appropriate intervals. Used in error, oxytocin can cause patient harm, highlighting the importance of precise administration using infusion pumps, institutional safety checklists, and trained nursing staff to closely monitor uterine activity and fetal heart rate changes. In this review, we summarize the physiology, pharmacology, infusion regimens, and associated risks of oxytocin.
Collapse
Affiliation(s)
- Amy C Hermesch
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR.
| | - Annessa S Kernberg
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR
| | - Vanessa R Layoun
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR
| | - Aaron B Caughey
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
18
|
Tang Z, Gaskins AJ, Hood RB, Ford JB, Hauser R, Smith AK, Everson TM. Former smoking associated with epigenetic modifications in human granulosa cells among women undergoing assisted reproduction. Sci Rep 2024; 14:5009. [PMID: 38424222 PMCID: PMC10904848 DOI: 10.1038/s41598-024-54957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Smoking exposure during adulthood can disrupt oocyte development in women, contributing to infertility and possibly adverse birth outcomes. Some of these effects may be reflected in epigenome profiles in granulosa cells (GCs) in human follicular fluid. We compared the epigenetic modifications throughout the genome in GCs from women who were former (N = 15) versus never smokers (N = 44) undergoing assisted reproductive technologies (ART). This study included 59 women undergoing ART. Smoking history including time since quitting was determined by questionnaire. GCs were collected during oocyte retrieval and DNA methylation (DNAm) levels were profiled using the Infinium MethylationEPIC BeadChip. We performed an epigenome-wide association study with robust linear models, regressing DNAm level at individual loci on smoking status, adjusting for age, ovarian stimulation protocol, and three surrogate variables. We performed differentially methylated regions (DMRs) analysis and over-representation analysis of the identified CpGs and corresponding gene set. 81 CpGs were differentially methylated among former smokers compared to never smokers (FDR < 0.05). We identified 2 significant DMRs (KCNQ1 and RHBDD2). The former smoking-associated genes were enriched in oxytocin signaling, adrenergic signaling in cardiomyocytes, platelet activation, axon guidance, and chemokine signaling pathway. These epigenetic variations have been associated with inflammatory responses, reproductive outcomes, cancer development, neurodevelopmental disorder, and cardiometabolic health. Secondarily, we examined the relationships between time since quitting and DNAm at significant CpGs. We observed three CpGs in negative associations with the length of quitting smoking (p < 0.05), which were cg04254052 (KCNIP1), cg22875371 (OGDHL), and cg27289628 (LOC148145), while one in positive association, which was cg13487862 (PLXNB1). As a pilot study, we demonstrated epigenetic modifications associated with former smoking in GCs. The study is informative to potential biological pathways underlying the documented association between smoking and female infertility and biomarker discovery for smoking-associated reproductive outcomes.
Collapse
Affiliation(s)
- Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Alicia K Smith
- Department of Obstetrics and Gynecology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Al Musaimi O. Exploring FDA-Approved Frontiers: Insights into Natural and Engineered Peptide Analogues in the GLP-1, GIP, GHRH, CCK, ACTH, and α-MSH Realms. Biomolecules 2024; 14:264. [PMID: 38540684 PMCID: PMC10968328 DOI: 10.3390/biom14030264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 12/21/2024] Open
Abstract
Peptides continue to gain significance in the pharmaceutical arena. Since the unveiling of insulin in 1921, the Food and Drug Administration (FDA) has authorised around 100 peptides for various applications. Peptides, although initially derived from endogenous sources, have evolved beyond their natural origins, exhibiting favourable therapeutic effectiveness. Medicinal chemistry has played a pivotal role in synthesising valuable natural peptide analogues, providing synthetic alternatives with therapeutic potential. Furthermore, key chemical modifications have enhanced the stability of peptides and strengthened their interactions with therapeutic targets. For instance, selective modifications have extended their half-life and lessened the frequency of their administration while maintaining the desired therapeutic action. In this review, I analyse the FDA approval of natural peptides, as well as engineered peptides for diabetes treatment, growth-hormone-releasing hormone (GHRH), cholecystokinin (CCK), adrenocorticotropic hormone (ACTH), and α-melanocyte stimulating hormone (α-MSH) peptide analogues. Attention will be paid to the structure, mode of action, developmental journey, FDA authorisation, and the adverse effects of these peptides.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
20
|
Danoff JS, Carter CS, Gordevičius J, Milčiūtė M, Brooke RT, Connelly JJ, Perkeybile AM. Maternal oxytocin treatment at birth increases epigenetic age in male offspring. Dev Psychobiol 2024; 66:e22452. [PMID: 38533486 PMCID: PMC10963051 DOI: 10.1002/dev.22452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/26/2023] [Indexed: 03/28/2024]
Abstract
Exogenous oxytocin (OT) is widely used to induce or augment labor with little understanding of the impact on offspring development. In rodent models, including the prairie vole (Microtus ochrogaster), it has been shown that oxytocin administered to mothers can affect the nervous system of the offspring with long lasting behavioral effects especially on sociality. Here, we examined the hypothesis that perinatal oxytocin exposure could have epigenetic and transcriptomic consequences. Prairie voles were exposed to exogenous oxytocin, through injections given to the mother just prior to birth, and were studied at the time of weaning. The outcome of this study revealed increased epigenetic age in oxytocin-exposed animals compared to the saline-exposed group. Oxytocin exposure led to 900 differentially methylated CpG sites (annotated to 589 genes), and 2 CpG sites (2 genes) remained significantly different after correction for multiple comparisons. Differentially methylated CpG sites were enriched in genes known to be involved in regulation of gene expression and neurodevelopment. Using RNA-sequencing we also found 217 nominally differentially expressed genes (p<0.05) in nucleus accumbens, a brain region involved in reward circuitry and social behavior; after corrections for multiple comparisons 6 genes remained significantly differentially expressed. Finally, we found that maternal oxytocin administration led to widespread alternative splicing in the nucleus accumbens. These results indicate that oxytocin exposure during birth may have long lasting epigenetic consequences. A need for further investigation of how oxytocin administration impacts development and behavior throughout the lifespan is supported by these outcomes.
Collapse
Affiliation(s)
- Joshua S Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ
| | - C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA
- Kinsey Institute, Indiana University, Bloomington IN
| | | | | | | | | | - Allison M Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA
- Kinsey Institute, Indiana University, Bloomington IN
| |
Collapse
|
21
|
Araújo TCDL, Menezes PMN, Ribeiro TF, Macêdo CAF, Souza NACD, Lima KSB, Figueredo HFD, Silva FS, Rolim LA. Cannabis sativa L. roots from Northeast Brazil reduce abdominal contortions in a mouse model of primary dysmenorrhea. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116891. [PMID: 37423518 DOI: 10.1016/j.jep.2023.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although the root of Cannabis sativa L. has been mentioned in some regions, such as the Vale do São Francisco, for its potential traditional medicinal use as an anti-inflammatory, anti-asthmatic, and against gastrointestinal diseases, it has received little exploration and discussion. AIM OF THE STUDY This study aimed to perform a chemical analysis of an aqueous extract of Cannabis sativa roots (AqECsR) and evaluate its pharmacological effects against uterine disorders, in vivo and ex vivo, in rodents. MATERIALS AND METHODS The roots were provided by the Brazilian Federal Police, and the freeze-dried extract was used for the chemical analysis of the AqECsR by high performance liquid chromatography coupled with mass spectrometry (HPLC-MS). The sample was subsequently used in three doses for pharmacological assays (12.5, 25, and 50 mg/kg), which included the spasmolytic activity test and the primary dysmenorrhea test. The primary dysmenorrhea test aimed to verify the effect of AqECsR on induced abdominal contortions in female mice in vivo and to perform a morphometric analysis of the organs. Association tests at subtherapeutic doses of AqECsR with antidysmenorrheic drugs were also performed. RESULTS The data obtained by HPLC-MS suggested the presence of four substances: cannabisativine, anhydrocannabisativine, feruloyltyramine, and p-coumaroyltyramine. In the pharmacological assays, the AqECsR showed no spasmolytic effect. However, in the antidysmenorrheal activity test, AqECsR demonstrated a significant in vivo effect of reducing oxytocin-induced abdominal contortions. Morphometric analysis of the uterus showed no significant organ enlargement effect, and the association of AqECsR with subtherapeutic doses of three drugs used in antidysmenorrheal therapy (mefenamic acid, scopolamine, and nifedipine) showed an effect in reducing abdominal contortions. CONCLUSIONS In conclusion, AqECsR contains four chemical compounds and exhibits an antidysmenorrheic effect both alone and in association with drugs, reducing abdominal contortions in female mice without generating organ enlargement in the animals. Further studies are needed to prove the mechanism of action by which AqECsR promotes its effect on primary dysmenorrhea and to explore its associations.
Collapse
Affiliation(s)
- Tarcísio Cícero de Lima Araújo
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil; Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| | | | - Tiago Feitosa Ribeiro
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil; Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| | | | - Nathália Andrezza Carvalho de Souza
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil; Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| | - Kátia Simoni Bezerra Lima
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil; Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil.
| | - Heberte Fernandes de Figueredo
- Graduation in Agronomic Engineering, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil.
| | - Fabrício Souza Silva
- Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil.
| | - Larissa Araújo Rolim
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil; Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil.
| |
Collapse
|
22
|
Kacar E, Tan F, Sahinturk S, Zorlu G, Serhatlioglu I, Bulmus O, Ercan Z, Kelestimur H. Modulation of Melatonin Receptors Regulates Reproductive Physiology: The Impact of Agomelatine on the Estrus Cycle, Gestation, Offspring, and Uterine Contractions in Rats. Physiol Res 2023; 72:793-807. [PMID: 38215065 PMCID: PMC10805256 DOI: 10.33549/physiolres.935064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/22/2023] [Indexed: 05/14/2025] Open
Abstract
Agomelatine is a pharmaceutical compound that functions as an agonist for melatonin receptors, with a particular affinity for the MT1 and MT2 receptor subtypes. Its mode of action is integral to the regulation of diverse physiological processes, encompassing the orchestration of circadian rhythms, sleep-wake cycles, and mood modulation. In the present study, we delve into the intricate interplay between agomelatine and the modulation of estrus cycles, gestation periods, offspring numbers, and uterine contractions, shedding light on their collective impact on reproductive physiology. Both in vivo and in vitro experiments were performed. Wistar Albino rats, divided into four groups: two non-pregnant groups (D1 and D2) and two pregnant groups (G1 and G2). The D1 and G1 groups served as control groups, while the D2 and G2 groups received chronic agomelatine administration (10 mg/kg). Uterine contractions were assessed in vitro using myometrial strips. Luzindole, a melatonin receptor antagonist, was employed to investigate the pathway mediating agomelatine's effects on uterine contractions. In in vivo studies, chronic agomelatine administration extended the diestrus phase (p<0.05) in non-pregnant rats, prolonged the gestational period (p<0.01), and increased the fetal count (p<0.01) in pregnant rats. Additionally, agomelatine reduced plasma oxytocin and prostoglandin-E levels (p<0.01) during pregnancy. In vitro experiments showed that agomelatine dose-dependently inhibited spontaneous and oxytocin-induced myometrial contractions. Luzindole (2 µM) reverse the agomelatine-induced inhibition of myometrial contractions. These findings suggest that agomelatine holds the potential to modulate diverse reproductive parameters during the gestational period, influencing estrus cycling, gestational progression, offspring development, and the orchestration of uterine contractions.
Collapse
Affiliation(s)
- E Kacar
- Firat University, Faculty of Medicine, Physiology Department, Elazig, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Han Q, Ding Q, Yu L, Li T, Sun B, Tang Z. Hippocampal transcriptome analysis reveals mechanisms of cognitive impairment in beagle dogs with type 1 diabetes. J Neuropathol Exp Neurol 2023; 82:774-786. [PMID: 37533277 DOI: 10.1093/jnen/nlad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Diabetic encephalopathy is a common complication of type 1 diabetes. However, there have been few studies on cognitive impairment and hippocampal damage in type 1 diabetes mellitus (T1DM) using dogs as experimental animals. To investigate the effects of diabetes on the CNS, 40 adult beagles were divided into streptozotocin/alloxan type 1 diabetes model and control groups. The duration of diabetes in the model group was 120 days. A cognitive dysfunction scale was used to assess cognitive function. Hematoxylin and eosin and Golgi-Cox staining methods were used to observe morphological damage to the hippocampus. Transcriptomics was used to investigate differential gene expression in the hippocampus. The results showed that the cognitive dysfunction score of the model group was significantly higher than that of the control group. In addition, the number of normal neurons, the complexity of dendritic morphology, and the density of dendritic spines were decreased in the hippocampus of diabetic dogs. A total of 672 differentially expressed genes (DEGs) were identified, 289 of which were upregulated, and 383 were downregulated. Modified genes included DBH, IGFBP2, AVPR1A, and DRAXIN. In conclusion, type 1 diabetic dogs exhibit cognitive dysfunction. The DEGs were mainly enriched in metabolic, PI3K-Akt signaling, and neuroactive ligand-receptor interaction pathways.
Collapse
Affiliation(s)
- Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Qingyu Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Luyao Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Bingxia Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
24
|
Carter CS. Close encounters with oxytocin. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 15:100189. [PMID: 37577297 PMCID: PMC10422098 DOI: 10.1016/j.cpnec.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
The purpose of this narrative review is to use a personal perspective to describe unanticipated and pivotal findings that drew the author into the study oxytocin. Oxytocin was originally described as a "female reproductive hormone." However, supporting reproduction is only one of a myriad of functions now attributed to oxytocin. Oxytocin promotes survival and resilience in both sexes and across the lifespan, especially in the context of stress or trauma and helps to explain the health benefits of relationships. Oxytocin works in the context of individual histories and in conjunction with other molecules, as well as the autonomic nervous system and immune factors. The chemical properties of oxytocin make it biologically active, but difficult to measure. As a deeper understanding of the biology of oxytocin is emerging, we may use knowledge of the properties of oxytocin to uncover adaptive strategies that protect and heal in the face of stress and adversity in both males and females.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
- Department of Psychology, University of Virginia, Charlotteville, VA, USA
| |
Collapse
|
25
|
Riaposova L, Kim SH, Hanyaloglu AC, Sykes L, MacIntyre DA, Bennett PR, Terzidou V. Prostaglandin F2α requires activation of calcium-dependent signalling to trigger inflammation in human myometrium. Front Endocrinol (Lausanne) 2023; 14:1150125. [PMID: 37547305 PMCID: PMC10400332 DOI: 10.3389/fendo.2023.1150125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Preterm birth is one of the major causes of neonatal morbidity and mortality across the world. Both term and preterm labour are preceded by inflammatory activation in uterine tissues. This includes increased leukocyte infiltration, and subsequent increase in chemokine and cytokine levels, activation of pro-inflammatory transcription factors as NF-κB and increased prostaglandin synthesis. Prostaglandin F2α (PGF2α) is one of the myometrial activators and stimulators. Methods Here we investigated the role of PGF2α in pro-inflammatory signalling pathways in human myometrial cells isolated from term non-labouring uterine tissue. Primary myometrial cells were treated with G protein inhibitors, calcium chelators and/or PGF2α. Nuclear extracts were analysed by TranSignal cAMP/Calcium Protein/DNA Array. Whole cell protein lysates were analysed by Western blotting. mRNA levels of target genes were analysed by RT-PCR. Results The results show that PGF2α increases inflammation in myometrial cells through increased activation of NF-κB and MAP kinases and increased expression of COX-2. PGF2α was found to activate several calcium/cAMP-dependent transcription factors, such as CREB and C/EBP-β. mRNA levels of NF-κB-regulated cytokines and chemokines were also elevated with PGF2α stimulation. We have shown that the increase in PGF2α-mediated COX-2 expression in myometrial cells requires coupling of the FP receptor to both Gαq and Gαi proteins. Additionally, PGF2α-induced calcium response was also mediated through Gαq and Gαi coupling. Discussion In summary, our findings suggest that PGF2α-induced inflammation in myometrial cells involves activation of several transcription factors - NF-κB, MAP kinases, CREB and C/EBP-β. Our results indicate that the FP receptor signals via Gαq and Gαi coupling in myometrium. This work provides insight into PGF2α pro-inflammatory signalling in term myometrium prior to the onset of labour and suggests that PGF2α signalling pathways could be a potential target for management of preterm labour.
Collapse
Affiliation(s)
- Lucia Riaposova
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Sung Hye Kim
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Aylin C. Hanyaloglu
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David A. MacIntyre
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Phillip R. Bennett
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
| | - Vasso Terzidou
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- The March of Dimes European Prematurity Research Centre at Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Chelsea and Westminster Hospital National Health Service (NHS) Trust, London, United Kingdom
| |
Collapse
|
26
|
Porta M, Boening A, Tiemann J, Zack A, Patel A, Sondgeroth K. The Contractile Response to Oxytocin in Non-pregnant Rat Uteri Is Modified After the First Pregnancy. Reprod Sci 2023; 30:2152-2165. [PMID: 36696040 PMCID: PMC10310576 DOI: 10.1007/s43032-023-01163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023]
Abstract
During pregnancy, the uterus undergoes several modifications under the influence of hormonal and mechanical stimuli. We hypothesize that while most of these modifications are reverted during involution, some of the physiological properties of the uterus are permanently altered. To investigate this hypothesis, we conducted motility experiments to evaluate the contractility response of uterine tissue samples from non-pregnant virgin and proven breeder female rats to oxytocin (10-10 to 10-5 M). We found that the virgin tissue contracts more robustly than proven breeder tissue in the absence of oxytocin, yet with oxytocin, proven breeder samples displayed a significantly higher increase in activity. These results could depend on a more elevated expression of oxytocin receptor and/or on an alteration in the intracellular pathways affected by the activation of the oxytocin receptors. Here, we explored the impact of some structures involved in the management of intracellular calcium on the dose response to oxytocin recorded from virgin and proven breeder uterine strips. Specifically, we replicated the dose response experiments in low extracellular calcium (10 μM), in the presence of the intracellular calcium channel blocker ruthenium red (10 μM), and in the presence of the sarcoplasmic-endoplasmic reticulum calcium ATP-ase pump inhibitor, cyclopiazonic acid (10 μM). The results of these experiments suggest that also the expression of proteins that control intracellular calcium availability is affected by the experience of pregnancy. Molecular biology experiments will give us more detail on the magnitude of these expression changes.
Collapse
Affiliation(s)
- Maura Porta
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515 USA
| | - Amber Boening
- Master of Biomedical Sciences Program, Midwestern University, Downers Grove, IL 60515 USA
| | - Jonathan Tiemann
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515 USA
| | - Adam Zack
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515 USA
| | - Arjun Patel
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515 USA
| | - Korie Sondgeroth
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515 USA
| |
Collapse
|
27
|
Petrocelli G, Abruzzo PM, Pampanella L, Tassinari R, Marini S, Zamagni E, Ventura C, Facchin F, Canaider S. Oxytocin Modulates Osteogenic Commitment in Human Adipose-Derived Stem Cells. Int J Mol Sci 2023; 24:10813. [PMID: 37445991 PMCID: PMC10341672 DOI: 10.3390/ijms241310813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly harvested in minimally invasive contexts with few ethical concerns, and exhibit self-renewal, multi-lineage differentiation, and trophic signaling that make them attractive candidates for cell therapy approaches. The identification of natural molecules that can modulate their biological properties is a challenge for many researchers. Oxytocin (OXT) is a neurohypophyseal hormone that plays a pivotal role in the regulation of mammalian behavior, and is involved in health and well-being processes. Here, we investigated the role of OXT on hASC proliferation, migratory ability, senescence, and autophagy after a treatment of 72 h; OXT did not affect hASC proliferation and migratory ability. Moreover, we observed an increase in SA-β-galactosidase activity, probably related to the promotion of the autophagic process. In addition, the effects of OXT were evaluated on the hASC differentiation ability; OXT promoted osteogenic differentiation in a dose-dependent manner, as demonstrated by Alizarin red staining and gene/protein expression analysis, while it did not affect or reduce adipogenic differentiation. We also observed an increase in the expression of autophagy marker genes at the beginning of the osteogenic process in OXT-treated hASCs, leading us to hypothesize that OXT could promote osteogenesis in hASCs by modulating the autophagic process.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | | | - Serena Marini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Elena Zamagni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (P.M.A.); (L.P.); (S.M.); (E.Z.); (S.C.)
| |
Collapse
|
28
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
29
|
Boujenah J, Fernandez A, Drozd MM, Askenazy F, Carbonne B. Letter to the Editor: Failed labor induction and early-onset schizophrenia: Toward an oxytocin pathway genetic link? Eur J Obstet Gynecol Reprod Biol 2023; 285:204-205. [PMID: 37080893 DOI: 10.1016/j.ejogrb.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Jeremy Boujenah
- Service de Gynécologie-Obstétrique, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000 Monaco, Monaco.
| | - Arnaud Fernandez
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Hôpitaux Pédiatriques de Nice, CHU-Lenval, Nice, France; Université Côte d'Azur, CoBTek, Nice, France; CNRS UMR7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Malgorzata Marta Drozd
- CNRS UMR7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Florence Askenazy
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Hôpitaux Pédiatriques de Nice, CHU-Lenval, Nice, France; Université Côte d'Azur, CoBTek, Nice, France
| | - Bruno Carbonne
- Service de Gynécologie-Obstétrique, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000 Monaco, Monaco.
| |
Collapse
|
30
|
Mekhael AA, Bent JE, Fawcett JM, Campbell TS, Aguirre-Camacho A, Farrell A, Rash JA. Evaluating the efficacy of oxytocin for pain management: An updated systematic review and meta-analysis of randomized clinical trials and observational studies. Can J Pain 2023; 7:2191114. [PMID: 37205278 PMCID: PMC10187080 DOI: 10.1080/24740527.2023.2191114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Background There is a need for novel analgesics with favorable risk to benefit profiles. Oxytocin has recently gained attention for its potential analgesic properties. Aim The aim of this study was to perform an updated systematic review and meta-analysis evaluating the effect of oxytocin for pain management. Method Ovid MEDLINE, Embase, PsycINFO, CINAHL, and Clinicaltrials.gov were searched for articles reporting on associations between oxytocin and chronic pain management from January 2012 to February 2022. Studies published before 2012 that were identified in our previous systematic review were also eligible. Risk of bias of included studies was assessed. Synthesis of results was performed using meta-analysis and narrative synthesis. Results Searches returned 2087 unique citations. In total, 14 articles were included that reported on 1504 people living with pain. Results from meta-analysis and narrative review were mixed. Meta-analysis of three studies indicated that exogenous oxytocin administration did not result in a significant reduction in pain intensity relative to placebo (N = 3; n = 95; g = 0.31; 95% confidence interval [CI] -0.10, 0.73). Narrative review provided encouraging evidence that exogenous oxytocin administration reduced pain sensitivity among individuals with back pain, abdominal pain, and migraines. Results suggested that individual difference factors (e.g., sex and chronic pain condition) may influence oxytocin-induced nociception, but the heterogeneity and limited number of studies identified precluded further investigation. Discussion There is equipoise for the benefit of oxytocin for pain management. Future studies are imperative and should undertake more precise exploration of potential confounds and mechanisms of analgesic action to clarify inconsistency in the literature.
Collapse
Affiliation(s)
- Anastasia A. Mekhael
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Jennifer E. Bent
- Division of Community Health and Humanities, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Jonathan M. Fawcett
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Tavis S. Campbell
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Aldo Aguirre-Camacho
- School of Biomedical Sciences, European University of Madrid, Villaviciosa de Odón Madrid, Madrid, Spain
- Department of Psychology, Cardenal Cisneros University College, Madrid, Spain
| | - Alison Farrell
- Memorial University Libraries, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Joshua A. Rash
- Department of Psychology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
31
|
Tsuchiya H, Fujinoki M, Azuma M, Koshimizu TA. Vasopressin V1a receptor and oxytocin receptor regulate murine sperm motility differently. Life Sci Alliance 2023; 6:e202201488. [PMID: 36650057 PMCID: PMC9846835 DOI: 10.26508/lsa.202201488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Specific receptors for the neurohypophyseal hormones, arginine vasopressin (AVP) and oxytocin, are present in the male reproductive organs. However, their exact roles remain unknown. To elucidate the physiological functions of pituitary hormones in male reproduction, this study first focused on the distribution and function of one of the AVP receptors, V1a. In situ hybridization analysis revealed high expression of the Avpr1a in Leydig cells of the testes and narrow/clear cells in the epididymis, with the expression pattern differing from that of the oxytocin receptor (OTR). Notably, persistent motility and highly proportional hyperactivation were observed in spermatozoa from V1a receptor-deficient mice. In contrast, OTR blocking by antagonist atosiban decreased hyperactivation rate. Furthermore, AVP stimulation could alter the extracellular pH mediated by the V1a receptor. The results highlight the crucial role of neurohypophyseal hormones in male reproductive physiology, with potential contradicting roles of V1a and OTR in sperm maturation. Our findings suggest that V1a receptor antagonists are potential therapeutic drugs for male infertility.
Collapse
Affiliation(s)
- Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Masakatsu Fujinoki
- Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
32
|
Cherepanov SM, Yuhi T, Iizuka T, Hosono T, Ono M, Fujiwara H, Yokoyama S, Shuto S, Higashida H. Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PLoS One 2023; 18:e0281363. [PMID: 36758056 PMCID: PMC9910740 DOI: 10.1371/journal.pone.0281363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Contraction of the uterus is critical for parturient processes. Insufficient uterine tone, resulting in atony, can potentiate postpartum hemorrhage; thus, it is a major risk factor and is the main cause of maternity-related deaths worldwide. Oxytocin (OT) is recommended for use in combination with other uterotonics for cases of refractory uterine atony. However, as the effect of OT dose on uterine contraction and control of blood loss during cesarean delivery for labor arrest are highly associated with side effects, small amounts of uterotonics may be used to elicit rapid and superior uterine contraction. We have previously synthesized OT analogs 2 and 5, prolines at the 7th positions of which were replaced with N-(p-fluorobenzyl) glycine [thus, compound 2 is now called fluorobenzyl (FBOT)] or N-(3-hydroxypropyl) glycine [compound 5 is now called hydroxypropyl (HPOT)], which exhibited highly potent binding affinities for human OT receptors in vitro. In this study, we measured the ex vivo effects of FBOT and HPOT on contractions of uteri isolated from human cesarean delivery samples and virgin female mice. We evaluated the potency and efficacy of the analogs on uterine contraction, additivity with OT, and the ability to overcome the effects of atosiban, an OT antagonist. In human samples, the potency rank judged by the calculated EC50 (pM) was as follows: HPOT (189) > FBOT (556) > OT (5,340) > carbetocin (12,090). The calculated Emax was 86% for FBOT and 75% for HPOT (100%). Recovery from atosiban inhibition after HPOT treatment was as potent as that after OT treatment. HPOT showed additivity with OT. FBOT (56 pM) was found to be the strongest agonist in virgin mouse uterus. HPOT and FBOT demonstrated high potency and partial agonist efficacy in the human uterus. These results suggested that HPOT and FBOT are highly uterotonic for the human uterus and performed better than OT, indicating that they may prevent postpartum hemorrhage.
Collapse
Affiliation(s)
- Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigeru Yokoyama
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
33
|
Oxytocin receptor DNA methylation is associated with exogenous oxytocin needs during parturition and postpartum hemorrhage. COMMUNICATIONS MEDICINE 2023; 3:11. [PMID: 36707542 PMCID: PMC9882749 DOI: 10.1038/s43856-023-00244-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The oxytocin receptor gene (OXTR) is regulated, in part, by DNA methylation. This mechanism has implications for uterine contractility during labor and for prevention or treatment of postpartum hemorrhage, an important contributor to global maternal morbidity and mortality. METHODS We measured and compared the level of OXTR DNA methylation between matched blood and uterine myometrium to evaluate blood as an indicator of uterine methylation status using targeted pyrosequencing and sites from the Illumina EPIC Array. Next, we tested for OXTR DNA methylation differences in blood between individuals who experienced a postpartum hemorrhage arising from uterine atony and matched controls following vaginal birth. Bivariate statistical tests, generalized linear modeling and Poisson regression were used in the analyses. RESULTS Here we show a significant positive correlation between blood and uterine DNA methylation levels at several OXTR loci. Females with higher OXTR DNA methylation in blood had required significantly more exogenous oxytocin during parturition. With higher DNA methylation, those who had oxytocin administered during labor had significantly greater relative risk for postpartum hemorrhage (IRR 2.95, 95% CI 1.53-5.71). CONCLUSIONS We provide evidence that epigenetic variability in OXTR is associated with the amount of oxytocin administered during parturition and moderates subsequent postpartum hemorrhage. Methylation can be measured using a peripheral tissue, suggesting potential use in identifying individuals susceptible to postpartum hemorrhage. Future studies are needed to quantify myometrial gene expression in connection with OXTR methylation.
Collapse
|
34
|
Erickson EN, Krol KM, Perkeybile AM, Connelly JJ, Myatt L. Oxytocin receptor single nucleotide polymorphism predicts atony-related postpartum hemorrhage. BMC Pregnancy Childbirth 2022; 22:884. [PMID: 36447139 PMCID: PMC9706912 DOI: 10.1186/s12884-022-05205-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Postpartum hemorrhage remains a key contributor to overall maternal morbidity in the United States. Current clinical assessment methods used to predict postpartum hemorrhage are unable to prospectively identify about 40% of hemorrhage cases. Oxytocin is a first-line pharmaceutical for preventing and treating postpartum hemorrhage, which acts through oxytocin receptors on uterine myocytes. Existing research indicates that oxytocin function is subject to variation, influenced in part by differences in the DNA sequence within the oxytocin receptor gene. One variant, rs53576, has been shown to be associated with variable responses to exogenous oxytocin when administered during psychological research studies. How this variant may influence myometrial oxytocin response in the setting of third stage labor has not been studied. We tested for differences in the frequency of the oxytocin receptor genotype at rs53576 in relationship to the severity of blood loss among a sample of individuals who experienced vaginal birth. METHODS A case-control prospective design was used to enroll 119 postpartum participants who underwent vaginal birth who were at least 37 weeks of gestation. Cases were defined by either a 1000 mL or greater blood loss or instances of heavier bleeding where parturients were given additional uterotonic treatment due to uterine atony. Controls were matched to cases on primiparity and labor induction status. Genotype was measured from a maternal blood sample obtained during the 2nd postpartum month from 95 participants. Statistical analysis included bivariate tests and generalized linear and Poisson regression modeling. RESULTS The distribution of the genotype across the sample of 95 participants was 40% GG (n = 38), 50.5% AG (n = 48) and 9.5% AA (n = 9). Blood loss of 1000 mL or greater occurred at a rate of 7.9% for GG, 12.5% for AG and 55.6% for AA participants (p = 0.005). Multivariable models demonstrated A-carriers (versus GG) had 275.2 mL higher blood loss (95% CI 96.9-453.4, p < 0.01) controlling for parity, intrapartum oxytocin, self-reported ancestry, active management of third stage or genital tract lacerations. Furthermore, A-carrier individuals had a 79% higher risk for needing at least one second-line treatment (RR = 1.79, 95% CI = 1.08-2.95) controlling for covariates. Interaction models revealed that A-carriers who required no oxytocin for labor stimulation experienced 371.4 mL greater blood loss (95% CI 196.6-546.2 mL). CONCLUSIONS We provide evidence of a risk allele in the oxytocin receptor gene that may be involved in the development of postpartum hemorrhage among participants undergoing vaginal birth, particularly among those with fewer risk factors. The findings, if reproducible, could be useful in studying pharmacogenomic strategies for predicting, preventing or treating postpartum hemorrhage.
Collapse
Affiliation(s)
- Elise N. Erickson
- grid.134563.60000 0001 2168 186XPresent Address: University of Arizona, Tucson, AZ USA ,grid.5288.70000 0000 9758 5690Oregon Health and Science University, OR Portland, USA
| | - Kathleen M. Krol
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Charlottesville, VA USA
| | | | - Jessica J. Connelly
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Charlottesville, VA USA
| | - Leslie Myatt
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, OR Portland, USA
| |
Collapse
|
35
|
Involvement of Oxytocin and Progesterone Receptor Expression in the Etiology of Canine Uterine Inertia. Int J Mol Sci 2022; 23:ijms232113601. [DOI: 10.3390/ijms232113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
An altered oxytocin and progesterone receptor (OXTR and PGR, respectively) expression was postulated in canine uterine inertia (UI), which is the lack of functional myometrial contractions. OXTR and PGR expressions were compared in uterine tissue obtained during C-section due to primary UI (PUI; n = 12) and obstructive dystocia (OD, n = 8). In PUI, the influence of litter size was studied (small/normal/large litter: PUI-S/N/L: n = 5/4/3). Staining intensity in immunohistochemistry was scored for the longitudinal and circular myometrial layer and summarized per dog (IP-Myoscore). Mean P4 did not differ significantly between PUI (n = 9) and OD (n = 7). OXTR and PGR expressions (ratios) were significantly higher in PUI (OXTR: p = 0.0019; PGR: p = 0.0339), also for OXTR in PUI-N versus OD (p = 0.0034). A trend for a higher PGR IP-Myoscore was identified (PUI-N vs. OD, p = 0.0626) as well as an influence of litter size (lowest PGR-Myoscore in PUI-L, p = 0.0391). In conclusion, PUI was not related to higher P4, but potentially increased PGR availability compared to OD. It remains to be clarified whether OXTR is upregulated in PUI due to a counterregulatory mechanism to overcome myometrial quiescence or downregulated in OD due to physiological slow OXTR desensitization associated with an advanced duration of labor. Identified OXTR differences between myometrial layers indicate the need for further research.
Collapse
|
36
|
Li WN, Dickson MJ, DeMayo FJ, Wu SP. The role of progesterone receptor isoforms in the myometrium. J Steroid Biochem Mol Biol 2022; 224:106160. [PMID: 35931328 PMCID: PMC9895129 DOI: 10.1016/j.jsbmb.2022.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023]
Abstract
Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.
Collapse
Affiliation(s)
- Wan-Ning Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mackenzie J Dickson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
38
|
Garrett AS, Means SA, Roesler MW, Miller KJW, Cheng LK, Clark AR. Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: A review. Front Physiol 2022; 13:1017649. [PMID: 36277190 PMCID: PMC9585314 DOI: 10.3389/fphys.2022.1017649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Rashidi M, Maier E, Dekel S, Sütterlin M, Wolf RC, Ditzen B, Grinevich V, Herpertz SC. Peripartum effects of synthetic oxytocin: The good, the bad, and the unknown. Neurosci Biobehav Rev 2022; 141:104859. [PMID: 36087759 DOI: 10.1016/j.neubiorev.2022.104859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The first clinical applications of oxytocin (OT) were in obstetrics as a hormone to start and speed up labor and to control postpartum hemorrhage. Discoveries in the 1960s and 1970s revealed that the effects of OT are not limited to its peripheral actions around birth and milk ejection. Indeed, OT also acts as a neuromodulator in the brain affecting fear memory, social attachment, and other forms of social behaviors. The peripheral and central effects of OT have been separately subject to extensive scrutiny. However, the effects of peripheral OT-particularly in the form of administration of synthetic OT (synOT) around birth-on the central nervous system are surprisingly understudied. Here, we provide a narrative review of the current evidence, suggest putative mechanisms of synOT action, and provide new directions and hypotheses for future studies to bridge the gaps between neuroscience, obstetrics, and psychiatry.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
| | - Eduard Maier
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sharon Dekel
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
40
|
Wen B, Zheng Z, Wang L, Qian X, Wang X, Chen Y, Bao J, Jiang Y, Ji K, Liu H. HIF-1α is essential for the augmentation of myometrial contractility during labor†. Biol Reprod 2022; 107:1540-1550. [PMID: 36094838 PMCID: PMC9752684 DOI: 10.1093/biolre/ioac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine contraction is crucial for a successful labor and the prevention of postpartum hemorrhage. It is enhanced by hypoxia; however, its underlying mechanisms are yet to be elucidated. In this study, transcriptomes revealed that hypoxia-inducible factor-1alpha was upregulated in laboring myometrial biopsies, while blockade of hypoxia-inducible factor-1alpha decreased the contractility of the myometrium and myocytes in vitro via small interfering RNA and the inhibitor, 2-methoxyestradiol. Chromatin immunoprecipitation sequencing revealed that hypoxia-inducible factor-1alpha directly binds to the genome of contraction-associated proteins: the promoter of Gja1 and Ptgs2, and the intron of Oxtr. Silencing the hypoxia-inducible factor-1alpha reduced the expression of Ptgs2, Gja1, and Oxtr. Furthermore, blockade of Gja1 or Ptgs2 led to a significant decrease in myometrial contractions in the hypoxic tissue model, whereas atosiban did not remarkably influence contractility. Our study demonstrates that hypoxia-inducible factor-1alpha is essential for promoting myometrial contractility under hypoxia by directly targeting Gja1 and Ptgs2, but not Oxtr. These findings help us to better understand the regulation of myometrial contractions under hypoxia and provide a promising strategy for labor management and postpartum hemorrhage treatment.
Collapse
Affiliation(s)
| | | | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xueya Qian
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanmin Jiang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Correspondence: Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, China. E-mail:
| |
Collapse
|
41
|
Yin Z, Su J, Fei J, Li T, Li D, Cao Y, Khalil RA. Preserved oxytocin-induced myometrium contraction and sensitivity to progesterone inhibition following rat uterus thermal insult. Impact on fertility. Biochem Pharmacol 2022; 204:115244. [PMID: 36087639 DOI: 10.1016/j.bcp.2022.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Women seeking improved fertility often undergo diagnostic hysteroscopy that could cause uterine thermal injury with unclear impact on uterine contraction, embryo implantation and fertility. We tested whether uterine thermal insult adversely affects myometrium function and contraction related receptors, channels, junctional proteins and remodeling enzymes. Female Sprague-Dawley rats were anesthetized, the left uterine horn was infused with 85 ℃ hot saline (thermal Insult) and the right horn was infused with 25℃ warm saline (control) for 3 min. After 7-days recovery, uterine strips were prepared for tissue histology and measurement of contraction, and mRNA and protein levels of oxytocin receptor, progesterone (P4) receptor A (PR-A), membrane K+ channel TREK-1, junctional protein connexin-43 (CX-43) and matrix metalloproteinases MMP-2 and MMP-9. Uterine tissue histology showed cellular swelling and inflammatory cell infiltration immediately following thermal insult, and recovery with no difference from control 7-days later. KCl (96 mM) and oxytocin (10-13-10-7 M) caused significant contraction that was not different in thermal insult vs control uterine strips. Pretreatment with P4 (10-5 M) for 1 h caused marked inhibition of KCl and oxytocin contraction that was insignificantly greater in thermal vs control uterus. RT-PCR showed decreases in oxytocin receptor, PR-A, TREK-1, CX-43, MMP-2 and MMP-9 mRNA in thermal vs control uterus. Western blots showed decreases in oxytocin receptor, no change in TREK-1 and increased PRA, CX-43, MMP-2, and MMP-9 protein levels in thermal vs control uterus. To assess the impact on fertility, female rats were housed with male rats, and on gestational day 19, the litter size, pup weight and crown-rump length, and placenta weight were not different in thermal vs control uterus. Thus, after thermal insult-induced immediate inflammation and reduced heat-sensitive mRNA expression, the uterus undergoes a recovery and adaptation process involving preserved oxytocin-induced contraction, P4 inhibition and TREK-1 channels. The uterus self-healing process appears to require improved PR-A signaling, intercellular communication via CX-43 and tissue remodeling by MMP-2 and MMP-9. The uterine thermal recovery processes could be essential for maintaining fertility and future pregnancy outcome.
Collapse
Affiliation(s)
- Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Jingjing Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Fei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengteng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dan Li
- Department of Scientific Research, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China.
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
42
|
OXTR High stroma fibroblasts control the invasion pattern of oral squamous cell carcinoma via ERK5 signaling. Nat Commun 2022; 13:5124. [PMID: 36045118 PMCID: PMC9433374 DOI: 10.1038/s41467-022-32787-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
The Pattern Of Invasion (POI) of tumor cells into adjacent normal tissues clinically predicts postoperative tumor metastasis/recurrence of early oral squamous cell carcinoma (OSCC), but the mechanisms underlying the development of these subtypes remain unclear. Focusing on the highest score of POIs (Worst POI, WPOI) present within each tumor, we observe a disease progression-driven shift of WPOI towards the high-risk type 4/5, associated with a mesenchymal phenotype in advanced OSCC. WPOI 4-5-derived cancer-associated fibroblasts (CAFsWPOI4-5), characterized by high oxytocin receptor expression (OXTRHigh), contribute to local-regional metastasis. OXTRHigh CAFs induce a desmoplastic stroma and CCL26 is required for the invasive phenotype of CCR3+ tumors. Mechanistically, OXTR activates nuclear ERK5 transcription signaling via Gαq and CDC37 to maintain high levels of OXTR and CCL26. ERK5 ablation reprograms the pro-invasive phenotype of OXTRHigh CAFs. Therefore, targeting ERK5 signaling in OXTRHigh CAFs is a potential therapeutic strategy for OSCC patients with WPOI 4-5. Worst pattern of invasion (WPOI) is a parameter used to quantify tumor invasiveness of oral squamous cell carcinoma (OSCC). Here the authors show that a fibroblast subset characterized by the expression of the oxytocin receptor is enriched in highly invasive WPOI 4-5 OSCC tumors and can be targeted to reduce the desmoplastic stroma and tumor metastasis.
Collapse
|
43
|
Leng G, Leng RI, Ludwig M. Oxytocin-a social peptide? Deconstructing the evidence. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210055. [PMID: 35858110 PMCID: PMC9272144 DOI: 10.1098/rstb.2021.0055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
In this paper, we analyse the claim that oxytocin is a 'social neuropeptide'. This claim originated from evidence that oxytocin was instrumental in the initiation of maternal behaviour and it was extended to become the claim that oxytocin has a key role in promoting social interactions between individuals. We begin by considering the structure of the scientific literature on this topic, identifying closely interconnected clusters of papers on particular themes. We then analyse this claim by considering evidence of four types as generated by these clusters: (i) mechanistic studies in animal models, designed to understand the pathways involved in the behavioural effects of centrally administered oxytocin; (ii) evidence from observational studies indicating an association between oxytocin signalling pathways and social behaviour; (iii) evidence from intervention studies, mainly involving intranasal oxytocin administration; and (iv) evidence from translational studies of patients with disorders of social behaviour. We then critically analyse the most highly cited papers in each segment of the evidence; we conclude that, if these represent the best evidence, then the evidence for the claim is weak. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK
| | - Rhodri I. Leng
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK
- Faculty of Health Sciences, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
44
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
45
|
Grant AD, Erickson EN. Birth, love, and fear: Physiological networks from pregnancy to parenthood. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100138. [PMID: 35757173 PMCID: PMC9227990 DOI: 10.1016/j.cpnec.2022.100138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Pregnancy and childbirth are among the most dramatic physiological and emotional transformations of a lifetime. Despite their central importance to human survival, many gaps remain in our understanding of the temporal progression of and mechanisms underlying the transition to new parenthood. The goal of this paper is to outline the physiological and emotional development of the maternal-infant dyad from late pregnancy to the postpartum period, and to provide a framework to investigate this development using non-invasive timeseries. We focus on the interaction among neuroendocrine, emotional, and autonomic outputs in the context of late pregnancy, parturition, and post-partum. We then propose that coupled dynamics in these outputs can be leveraged to map both physiologic and pathologic pregnancy, parturition, and parenthood. This approach could address gaps in our knowledge and enable early detection or prediction of problems, with both personalized depth and broad population scale.
Collapse
Affiliation(s)
- Azure D. Grant
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Levels Health Inc., 228 Park Ave. South, PMB 63877, New York, NY, 10003, United States
| | - Elise N. Erickson
- Oregon Health and Science University, Portland, OR, 97239, United States
| |
Collapse
|
46
|
Kirchhoff E, Schneider V, Pichler G, Reif P, Haas J, Joksch M, Mager C, Schmied C, Schöll W, Pichler-Stachl E, Gold D. Hexoprenaline Compared with Atosiban as Tocolytic Treatment for Preterm Labor. Geburtshilfe Frauenheilkd 2022; 82:852-858. [PMID: 35967742 PMCID: PMC9365465 DOI: 10.1055/a-1823-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/10/2022] [Indexed: 11/08/2022] Open
Abstract
Introduction
Preterm birth is defined as a live birth before 37 weeks of gestation and is associated with increased neonatal morbidity and mortality. The aim of this study is to
compare the efficacy of hexoprenaline and atosiban for short- and long-term tocolysis and their effects on neonatal and maternal outcomes.
Methods
This retrospective cohort study included women with threatened preterm labor between 24 + 0 and 34 + 0 weeks of gestation without premature rupture of membranes. The
tocolytic efficacy of hexoprenaline and atosiban was compared in women receiving one of the two medications for short- and long-term tocolysis. Continuous variables were compared using
t-test or Mann–Whitney U test, as appropriate. Comparison of categorical variables between the two groups was done with χ
2
test after Pearsonʼs and Fisherʼs exact test.
Results
761 women were enrolled in this study; 387 women received atosiban and 374 women received hexoprenaline as their primary tocolytic agent. Atosiban showed a higher efficacy as
a primary tocolytic agent (p = 0.000) within 48 hours. As regards long-term tocolysis, there were no differences between the treatment groups (p = 0.466). Maternal side effects such as
tachycardia (p = 0.018) or palpitations (p = 0.000) occurred more frequently after the administration of hexoprenaline, while there were no differences between the two drugs administered
with regard to any other maternal or neonatal outcome parameter.
Conclusion
Our retrospective study shows a significantly higher efficacy of atosiban in the first 48 hours, especially when administered at an early gestational age. There were no
significant differences in terms of neonatal outcome but significantly more maternal adverse effects during the administration of hexoprenaline.
Collapse
Affiliation(s)
- Ebba Kirchhoff
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Verena Schneider
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Gerhard Pichler
- 2 Klinische Abteilung für Neonatologie der Med. Universität Graz, Graz, Austria
| | - Philipp Reif
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Josef Haas
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Maike Joksch
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Corinna Mager
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Christian Schmied
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Wolfgang Schöll
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Elisabeth Pichler-Stachl
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| | - Daniela Gold
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med. Universität Graz, Graz, Austria
| |
Collapse
|
47
|
Involvement of a neutrophil-mast cell axis in the effects of Piper malacophyllum (C. PESL) C. DC extract and its isolated compounds in a mouse model of dysmenorrhoea. Inflammopharmacology 2022; 30:2489-2504. [PMID: 35867292 DOI: 10.1007/s10787-022-01032-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
The effects of Piper malacophyllum (C. Pesl) C. DC extracts and its isolated compounds were analysed in a mouse model of primary dysmenorrhoea (PD). Female Swiss mice (6-8 weeks old) on proestrus were intraperitoneally treated with estradiol benzoate for 3 days, to induce PD. Twenty-four hours later, animals were treated 24 h later with vehicle, plant extract, gibbilimbol B, 4,6-dimethoxy-5-E-phenylbutenolide, mixture of 4,6-dimethoxy-5-E-phenylbutenolide and 4,6-dimethoxy-5-Z-phenylbutenolide, or ibuprofen. One hour later, oxytocin was injected and the numbers of abdominal writhing were counted. Then, mice were euthanized and uteri were collected for morphometrical and histological analyses. The effects of P. malacophyllum in inflammation were investigated in mouse peritoneal neutrophils culture stimulated with LPS or fMLP (chemotaxis and mediator release). Finally, uterus contractile and relaxing responses were assessed. Similar to ibuprofen, P. malacophyllum extract and isolated compounds reduced abdominal writhing in mice with PD. Histology indicated a marked neutrophil and mast cell infiltrate in the uterus of PD animals which was attenuated by the extract. The compounds and the extract reduced neutrophil chemotaxis and inflammatory mediator release by these cells. Reduced TNF levels were also observed in uteri of PD mice treated with P. malacophyllum. The extract did not affect spontaneous uterine contractions nor those induced by carbachol or KCl. However, it caused relaxation of oxytocin-induced uterine contraction, an effect blunted by H1 receptor antagonist. Overall the results indicate that P. malacophyllum may represent interesting natural tools for reliving PD symptoms, reducing the triad of pain, inflammation and spasmodic uterus behaviour.
Collapse
|
48
|
Szydełko-Gorzkowicz M, Poniedziałek-Czajkowska E, Mierzyński R, Sotowski M, Leszczyńska-Gorzelak B. The Role of Kisspeptin in the Pathogenesis of Pregnancy Complications: A Narrative Review. Int J Mol Sci 2022; 23:ijms23126611. [PMID: 35743054 PMCID: PMC9223875 DOI: 10.3390/ijms23126611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022] Open
Abstract
Kisspeptins are the family of neuropeptide products of the KISS-1 gene that exert the biological action by binding with the G-protein coupled receptor 54 (GPR54), also known as the KISS-1 receptor. The kisspeptin level dramatically increases during pregnancy, and the placenta is supposed to be its primary source. The role of kisspeptin has already been widely studied in hypogonadotropic hypogonadism, fertility, puberty disorders, and insulin resistance-related conditions, including type 2 diabetes mellitus, polycystic ovary syndrome, and obesity. Gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth, fetal growth restriction (FGR), or spontaneous abortion affected 2 to 20% of pregnancies worldwide. Their occurrence is associated with numerous short and long-term consequences for mothers and newborns; hence, novel, non-invasive predictors of their development are intensively investigated. The study aims to present a comprehensive review emphasizing the role of kisspeptin in the most common pregnancy-related disorders and neonatal outcomes. The decreased level of kisspeptin is observed in women with GDM, FGR, and a high risk of spontaneous abortion. Nevertheless, there are still many inconsistencies in kisspeptin concentration in pregnancies with preterm birth or PE. Further research is needed to determine the usefulness of kisspeptin as an early marker of gestational and neonatal complications.
Collapse
|
49
|
Mitre M, Saadipour K, Williams K, Khatri L, Froemke RC, Chao MV. Transactivation of TrkB Receptors by Oxytocin and Its G Protein-Coupled Receptor. Front Mol Neurosci 2022; 15:891537. [PMID: 35721318 PMCID: PMC9201241 DOI: 10.3389/fnmol.2022.891537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-derived Neurotrophic Factor (BDNF) binds to the TrkB tyrosine kinase receptor, which dictates the sensitivity of neurons to BDNF. A unique feature of TrkB is the ability to be activated by small molecules in a process called transactivation. Here we report that the brain neuropeptide oxytocin increases BDNF TrkB activity in primary cortical neurons and in the mammalian neocortex during postnatal development. Oxytocin produces its effects through a G protein-coupled receptor (GPCR), however, the receptor signaling events that account for its actions have not been fully defined. We find oxytocin rapidly transactivates TrkB receptors in bath application of acute brain slices of 2-week-old mice and in primary cortical culture by increasing TrkB receptor tyrosine phosphorylation. The effects of oxytocin signaling could be distinguished from the related vasopressin receptor. The transactivation of TrkB receptors by oxytocin enhances the clustering of gephyrin, a scaffold protein responsible to coordinate inhibitory responses. Because oxytocin displays pro-social functions in maternal care, cognition, and social attachment, it is currently a focus of therapeutic strategies in autism spectrum disorders. Interestingly, oxytocin and BDNF are both implicated in the pathophysiology of depression, schizophrenia, anxiety, and cognition. These results imply that oxytocin may rely upon crosstalk with BDNF signaling to facilitate its actions through receptor transactivation.
Collapse
Affiliation(s)
- Mariela Mitre
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Departments of Cell Biology, Psychiatry, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Khalil Saadipour
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
| | - Kevin Williams
- Departments of Biology and Psychology, University of Georgia, Athens, GA, United States
| | - Latika Khatri
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
| | - Robert C. Froemke
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Moses V. Chao
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Departments of Cell Biology, Psychiatry, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
50
|
Macêdo CAF, Paiva GOD, Menezes PMN, Ribeiro TF, Brito MC, Vilela DAD, Duarte Filho LAMDS, Ribeiro FPRDA, Lucchese AM, Lima JTD, Silva FS. Lippia origanoides essential oil induces tocolytic effect in virgin rat uterus and inhibits writhing in a dysmenorrhea mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115099. [PMID: 35167934 DOI: 10.1016/j.jep.2022.115099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species Lippia origanoides Kunth, popularly known as "salva-de-marajó", is used in Brazilian traditional "quilombola" communities to treat menstrual cramps and uterine inflammation. AIM OF THE STUDY Evaluate the spasmolytic activity of Lippia origanoides essential oil (LOO) on experimental models of uterine conditions related to menstrual cramps and investigate its mechanism of action. MATERIALS AND METHODS Virgin rat-isolated uterus was mounted in the organ bath apparatus to evaluate the spasmolytic effect of LOO on basal tonus and contractions induced by carbachol, KCl, or oxytocin. We used pharmacological agents to verify the relaxation mechanism of LOO. The evaluation of uterine contractility in virgin rats, after treatment with LOO for three consecutive days, was carried out by the construction of a concentration-response curve with oxytocin or carbachol. The primary dysmenorrhea animal model was replicated with an injection of estradiol cypionate in female mice for three consecutive days, followed by intraperitoneal application of oxytocin. RESULTS LOO relaxed the rat uterus precontracted with 10-2 IU/mL oxytocin (logEC50 = 1.98 ± 0.07), 1 μM carbachol (logEC50 = 1.42 ± 0.07) or 60 mM KCl (logEC50 = 1.53 ± 0.05). It was also able relax uterus on spontaneous contractions (logEC50 = 0.41 ± 0.05). Preincubation with glibenclamide, propranolol, phentolamine or L-NAME in contractions induced by carbachol did not alter significantly the relaxing effect of LOO. However, in the presence of 4-aminopyridine, CsCl or tetraethylammonium there was a reduction of LOO potency, whereas the blockers methylene blue, ODQ, aminophylline and heparin potentiated the LOO relaxing effect. Preincubation with LOO in a Ca2+ free medium at concentrations of 27 μg/mL or 81 μg/mL reduced the contraction induced by carbachol. The administration of LOO for 3 days did not alter uterus contractility. The treatment with LOO at 30 or 100 mg/kg intraperitoneally, or 100 mg/kg orally, inhibited writhing in female mice. The association of LOO at 10 mg/kg with nifedipine or mefenamic acid potentiated writhing inhibition in mice. CONCLUSIONS The essential oil of L. origanoides has tocolytic activity in rat isolated uterus pre-contracted with KCl, oxytocin, or carbachol. This effect is possibly related to the opening of potassium channels (Kir, KV, and KCa), cAMP increase, and diminution of intracellular Ca2+. This relaxant effect, probably, contributed to reduce the number of writhings in an animal model of dysmenorrhea being potentiated by nifedipine or mefenamic acid. Taken together, the results here presented indicate that this species has a pharmacological potential for the treatment of primary dysmenorrhea, supporting its use in folk medicine.
Collapse
Affiliation(s)
| | - Gabriela Olinda de Paiva
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | - Pedro Modesto Nascimento Menezes
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Rede Nordeste de Biotecnologia, Universidade Federal Rural de Pernambuco (UFRPE), Brazil.
| | - Tiago Feitosa Ribeiro
- Rede Nordeste de Biotecnologia, Universidade Federal Rural de Pernambuco (UFRPE), Brazil.
| | - Mariana Coelho Brito
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | | | | | | | - Angélica Maria Lucchese
- Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana (UEFS), Brazil.
| | - Julianeli Tolentino de Lima
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | - Fabrício Souza Silva
- Pós-graduação em Biociênicas, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| |
Collapse
|