1
|
Mińczuk K, Schlicker E, Krzyżewska A, Malinowska B. Angiotensin 1-7 injected into the rat paraventricular nucleus of hypothalamus increases blood pressure and heart rate via various receptors. Neuropharmacology 2025; 266:110279. [PMID: 39732324 DOI: 10.1016/j.neuropharm.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A2 (TP), α1-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats. Acute injection of Ang 1-7 into the PVN increased blood pressure (BP) by about 15 mmHg and heart rate (HR) by about 14 beats/min. After preinjection with bicuculline (GABAA receptor antagonist), CNQX + D-AP5 (AMPA/kainate and NMDA receptor antagonists) and SQ29548 (TP receptor antagonist) the BP and HR reactions to Ang 1-7 were attenuated or abolished. The vasopressin V1A and V1B receptor antagonists conivaptan and nelivaptan, and the NADPH oxidase inhibitor apocynin even reversed the pressor and tachycardic effects of Ang 1-7. Antagonists of P2X (PPADS) and α1-adrenergic receptors (prazosin), the free radical scavenger tempol and the superoxide dismutase inhibitor DETC did not modify the cardiovascular effects of Ang 1-7. The (Mas receptor-related) rise in BP and HR evoked by Ang 1-7 administered to the rat PVN is linked to glutamate, vasopressin, GABAA and thromboxane receptors, and to oxidative stress, but does not seem to involve α1-adrenergic or P2X receptors.
Collapse
Affiliation(s)
- K Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Ul. Mickiewicza 2A, 15-222, Białystok, Poland.
| | - E Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Ul. Mickiewicza 2A, 15-222, Białystok, Poland
| | - B Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Ul. Mickiewicza 2A, 15-222, Białystok, Poland
| |
Collapse
|
2
|
Andrani M, Dall’Olio E, De Rensis F, Tummaruk P, Saleri R. Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin. Biomolecules 2024; 14:934. [PMID: 39199322 PMCID: PMC11352677 DOI: 10.3390/biom14080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light-dark cycles in both humans and animals. In this review, we report that the presence of this hormone in bovine milk, with significant differences in concentration between daytime and nighttime milking, has increased interest in milk as a natural source of bioactive molecules. Melatonin lowers cortisol levels at night, reduces body temperature and blood pressure, coinciding with decreased alertness and performance, acts as an antioxidant and anti-inflammatory agent, modulates the immune system, offers neuroprotective benefits, and supports gastrointestinal health by scavenging free radicals and reducing oxidative stress in dairy cows. Many factors influence the release of melatonin, such as the intensity of artificial lighting during nighttime milking, the frequency of milkings, milk yield, and genetic differences between animals. Nocturnal milking under low-intensity light boosts melatonin, potentially reducing oxidative damage and mastitis risk. Additionally, ultra-high temperature (UHT) treatment does not significantly affect the melatonin content in milk. However, further research on its stability during milk processing and storage is crucial for ensuring product efficacy. In some countries, nighttime milk with naturally elevated melatonin content is already commercialized as a natural aid for sleep. Thus, naturally melatonin-rich milk may be a promising alternative to synthetic supplements for promoting better sleep and overall well-being.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Eleonora Dall’Olio
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Fabio De Rensis
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Padet Tummaruk
- Centre of Excellence in Swine Reproduction, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| |
Collapse
|
3
|
Simpson TL, Achtmeyer C, Batten L, Reoux J, Shofer J, Peskind ER, Saxon AJ, Raskind MA. Naltrexone augmented with prazosin for alcohol use disorder: results from a randomized controlled proof-of-concept trial. Alcohol Alcohol 2024; 59:agae062. [PMID: 39270736 DOI: 10.1093/alcalc/agae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
AIMS We conducted a proof-of-concept randomized controlled trial of the mu-opioid receptor antagonist, naltrexone, augmented with the alpha-1 adrenergic receptor antagonist, prazosin, for alcohol use disorder in veterans. We sought a signal that the naltrexone plus prazosin combination regimen would be superior to naltrexone alone. METHODS Thirty-one actively drinking veterans with alcohol use disorder were randomized 1:1:1:1 to naltrexone plus prazosin (NAL-PRAZ [n = 8]), naltrexone plus placebo (NAL-PLAC [n = 7]), prazosin plus placebo (PRAZ-PLAC [n = 7]), or placebo plus placebo (PLAC-PLAC [n = 9]) for 6 weeks. Prazosin was titrated over 2 weeks to a target dose of 4 mg QAM, 4 mg QPM, and 8 mg QHS. Naltrexone was administered at 50 mg QD. Primary outcomes were the Penn Alcohol Craving Scale (PACS), % drinking days (PDD), and % heavy drinking days (PHDD). RESULTS In the NAL-PRAZ condition, % reductions from baseline for all three primary outcome measures exceeded 50% and were at least twice as large as % reductions in the NAL-PLAC condition (PACS: 57% vs. 26%; PDD: 51% vs. 22%; PHDD: 69% vs. 15%) and in the other two comparator conditions. Standardized effect sizes between NAL-PRAZ and NAL-PLAC for each primary outcome measure were >0.8. All but one participant assigned to the two prazosin containing conditions achieved the target prazosin dose of 16 mg/day and maintained that dose for the duration of the trial. CONCLUSION These results suggest that prazosin augmentation of naltrexone enhances naltrexone benefit for alcohol use disorder. These results strengthen rationale for an adequately powered definitive randomized controlled trial.
Collapse
Affiliation(s)
- Tracy L Simpson
- Center of Excellence in Substance Addiction Treatment and Education (CESATE), Veterans Affairs (VA) Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, 1959 Pacific Ave, Seattle, WA 98195
| | - Carol Achtmeyer
- Center of Excellence in Substance Addiction Treatment and Education (CESATE), Veterans Affairs (VA) Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
| | - Lisa Batten
- Center of Excellence in Substance Addiction Treatment and Education (CESATE), Veterans Affairs (VA) Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
| | - Joseph Reoux
- Center of Excellence in Substance Addiction Treatment and Education (CESATE), Veterans Affairs (VA) Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, 1959 Pacific Ave, Seattle, WA 98195
| | - Jane Shofer
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, 1959 Pacific Ave, Seattle, WA 98195
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
| | - Elaine R Peskind
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, 1959 Pacific Ave, Seattle, WA 98195
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
| | - Andrew J Saxon
- Center of Excellence in Substance Addiction Treatment and Education (CESATE), Veterans Affairs (VA) Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, 1959 Pacific Ave, Seattle, WA 98195
| | - Murray A Raskind
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, 1959 Pacific Ave, Seattle, WA 98195
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108
| |
Collapse
|
4
|
Qiu G, Wang P, Rao J, Qing X, Cao C, Wang D, Mei B, Zhang J, Liu H, Yang Z, Liu X. Dexmedetomidine Inhibits Paraventricular Corticotropin-releasing Hormone Neurons that Attenuate Acute Stress-induced Anxiety-like Behavior in Mice. Anesthesiology 2024; 140:1134-1152. [PMID: 38498811 DOI: 10.1097/aln.0000000000004982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
BACKGROUND Dexmedetomidine has repeatedly shown to improve anxiety, but the precise neural mechanisms underlying this effect remain incompletely understood. This study aims to explore the role of corticotropin-releasing hormone-producing hypothalamic paraventricular nucleus (CRHPVN) neurons in mediating the anxiolytic effects of dexmedetomidine. METHODS A social defeat stress mouse model was used to evaluate the anxiolytic effects induced by dexmedetomidine through the elevated plus maze, open-field test, and measurement of serum stress hormone levels. In vivo Ca2+ signal fiber photometry and ex vivo patch-clamp recordings were used to determine the excitability of CRHPVN neurons and investigate the specific mechanism involved. CRHPVN neuron modulation was achieved through chemogenetic activation or inhibition. RESULTS Compared with saline, dexmedetomidine (40 µg/kg) alleviated anxiety-like behaviors. Additionally, dexmedetomidine reduced CRHPVN neuronal excitability. Chemogenetic activation of CRHPVN neurons decreased the time spent in the open arms of the elevated plus maze and in the central area of the open-field test. Conversely, chemogenetic inhibition of CRHPVN neurons had the opposite effect. Moreover, the suppressive impact of dexmedetomidine on CRHPVN neurons was attenuated by the α2-receptor antagonist yohimbine. CONCLUSIONS The results indicate that the anxiety-like effects of dexmedetomidine are mediated via α2-adrenergic receptor-triggered inhibition of CRHPVN neuronal excitability in the hypothalamus. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Gaolin Qiu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Peng Wang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xin Qing
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chenchen Cao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Dijia Wang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Bin Mei
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hu Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Ruyle BC, Lima-Silveira L, Martinez D, Cummings KJ, Heesch CM, Kline DD, Hasser EM. Paraventricular nucleus projections to the nucleus tractus solitarii are essential for full expression of hypoxia-induced peripheral chemoreflex responses. J Physiol 2023; 601:4309-4336. [PMID: 37632733 DOI: 10.1113/jp284907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/28/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is essential to peripheral chemoreflex neurocircuitry, but the specific efferent pathways utilized are not well defined. The PVN sends dense projections to the nucleus tractus solitarii (nTS), which exhibits neuronal activation following a hypoxic challenge. We hypothesized that nTS-projecting PVN (PVN-nTS) neurons contribute to hypoxia-induced nTS neuronal activation and cardiorespiratory responses. To selectively target PVN-nTS neurons, rats underwent bilateral nTS nanoinjection of retrogradely transported adeno-associated virus (AAV) driving Cre recombinase expression. We then nanoinjected into PVN AAVs driving Cre-dependent expression of Gq or Gi designer receptors exclusively activated by designer drugs (DREADDs) to test the degree that selective activation or inhibition, respectively, of the PVN-nTS pathway affects the hypoxic ventilatory response (HVR) of conscious rats. We used immunohistochemistry for Fos and extracellular recordings to examine how DREADD activation influences PVN-nTS neuronal activation by hypoxia. Pathway activation enhanced the HVR at moderate hypoxic intensities and increased PVN and nTS Fos immunoreactivity in normoxia and hypoxia. In contrast, PVN-nTS inhibition reduced both the HVR and PVN and nTS neuronal activation following hypoxia. To further confirm selective pathway effects on central cardiorespiratory output, rats underwent hypoxia before and after bilateral nTS nanoinjections of C21 to activate or inhibit PVN-nTS terminals. PVN terminal activation within the nTS enhanced tachycardic, sympathetic and phrenic (PhrNA) nerve activity responses to hypoxia whereas inhibition attenuated hypoxia-induced increases in nTS neuronal action potential discharge and PhrNA. The results demonstrate the PVN-nTS pathway enhances nTS neuronal activation and is necessary for full cardiorespiratory responses to hypoxia. KEY POINTS: The hypothalamic paraventricular nucleus (PVN) contributes to peripheral chemoreflex cardiorespiratory responses, but specific PVN efferent pathways are not known. The nucleus tractus solitarii (nTS) is the first integration site of the peripheral chemoreflex, and the nTS receives dense projections from the PVN. Selective GqDREADD activation of the PVN-nTS pathway was shown to enhance ventilatory responses to hypoxia and activation (Fos immunoreactivity (IR)) of nTS neurons in conscious rats, augmenting the sympathetic and phrenic nerve activity (SSNA and PhrNA) responses to hypoxia in anaesthetized rats. Selective GiDREADD inhibition of PVN-nTS neurons attenuates ventilatory responses, nTS neuronal Fos-IR, action potential discharge and PhrNA responses to hypoxia. These results demonstrate that a projection from the PVN to the nTS is critical for full chemoreflex responses to hypoxia.
Collapse
Affiliation(s)
- Brian C Ruyle
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Ludmila Lima-Silveira
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Diana Martinez
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Langen KR, Dantzler HA, de Barcellos-Filho PG, Kline DD. Hypoxia augments TRPM3-mediated calcium influx in vagal sensory neurons. Auton Neurosci 2023; 247:103095. [PMID: 37146443 PMCID: PMC10330432 DOI: 10.1016/j.autneu.2023.103095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Transient receptor potential melastatin 3 (TRPM3) channels contribute to nodose afferent and brainstem nucleus tractus solitarii (nTS) activity. Exposure to short, sustained hypoxia (SH) and chronic intermittent hypoxia (CIH) enhances nTS activity, although the mechanisms are unknown. We hypothesized TRPM3 may contribute to increased neuronal activity in nTS-projecting nodose ganglia viscerosensory neurons, and its influence is elevated following hypoxia. Rats were exposed to either room air (normoxia), 24-h of 10 % O2 (SH), or CIH (episodic 6 % O2 for 10d). A subset of neurons from normoxic rats were exposed to in vitro incubation for 24-h in 21 % or 1 % O2. Intracellular Ca2+ of dissociated neurons was monitored via Fura-2 imaging. Ca2+ levels increased upon TRPM3 activation via Pregnenolone sulfate (Preg) or CIM0216. Preg responses were eliminated by the TRPM3 antagonist ononetin, confirming agonist specificity. Removal of extracellular Ca2+ also eliminated Preg response, further suggesting Ca2+ influx via membrane-bound channels. In neurons isolated from SH-exposed rats, the TRPM3 elevation of Ca2+ was greater than in normoxic-exposed rats. The SH increase was reversed following a subsequent normoxic exposure. RNAScope demonstrated TRPM3 mRNA was greater after SH than in Norm ganglia. Incubating dissociated cultures from normoxic rats in 1 % O2 (24-h) did not alter the Preg Ca2+ responses compared to their normoxic controls. In contrast to in vivo SH, 10d CIH did not alter TRPM3 elevation of Ca2+. Altogether, these results demonstrate a hypoxia-specific increase in TRPM3-mediated calcium influx.
Collapse
Affiliation(s)
- Katherine R Langen
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA
| | - Heather A Dantzler
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA
| | - Procopio Gama de Barcellos-Filho
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA
| | - David D Kline
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Ji R, Cui M, Zhou D, Pan X, Xie Y, Wu X, Liang X, Zhang H, Song W. Adulthood bisphenol A exposure induces anxiety in male mice via downregulation of alpha-1D adrenergic receptor in paraventricular thalamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115205. [PMID: 37392660 DOI: 10.1016/j.ecoenv.2023.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disrupting chemical, is widely used in household plastic products. Large amounts of evidence indicate prenatal and postnatal BPA exposure causes neurodevelopmental disorders such as anxiety and autism. However, the neuronal mechanisms underlying the neurotoxic effects of adulthood BPA exposure remain poorly understood. Here, we provided evidences that adult mice treated with BPA (0.45 mg/kg/day) during 3 weeks exhibited sex-specific anxiety like behaviors. We demonstrated that the BPA-induced anxiety in male mice, but not in female mice, was closely associated with hyperactivity of glutamatergic neurons in the paraventricular thalamus (PVT). Acute chemogenetic activation of PVT glutamatergic neurons caused similar effects on anxiety as observed in male mice exposed to BPA. In contrast, acute chemogenetic inhibition of PVT glutamatergic neurons reduced BPA-induced anxiety in male mice. Concomitantly, the BPA-induced anxiety was related with a down-regulation of alpha-1D adrenergic receptor in the PVT. Taken together, the present study indicated a previously unknown target region in the brain for neurotoxic effects of BPA on anxiety and implicated a possible molecular mechanism of action.
Collapse
Affiliation(s)
- Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoyuan Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuqi Xie
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiling Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Liang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
8
|
Nakagawa Y, Yamada S. Alterations in Brain Neural Network and Stress System in Atopic Dermatitis: Novel Therapeutic Interventions. J Pharmacol Exp Ther 2023; 385:78-87. [PMID: 36828629 DOI: 10.1124/jpet.122.001482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Atopic dermatitis is a common chronic inflammatory skin disease, with most cases experiencing skin barrier dysfunction and enhanced allergen entry, accompanied by cytokine production which evokes predominantly type-2-skewed immune responses, itch, and scratching behavior. Although intense itch and excessive scratching behavior affect progression of skin lesions, it is unclear what causes them. Data suggest that scratching behavior stimulates brain dopaminergic reward and habit learning systems, strengthening habitual scratching behavior, while nocturnal scratching behavior presumably increases locus coeruleus-noradrenergic system activity, prompting sleep disturbances. At the early stage of atopic dermatitis, increased cortisol levels, due to hypothalamic-pituitary-adrenal axis overactivation caused by such system stimulation, can induce dorsolateral prefrontal cortex disturbance with reinforcement of habitual scratching behavior and may aggravate type-2-skewed immune responses in the skin. During the later phases, whereas blunted hypothalamic-pituitary-adrenal axis function and the shift of type-2-dominated to type-1-co-dominated inflammation are induced, noradrenergic system overactivation-associated dorsolateral prefrontal cortex disruption is ongoing and responsible for itch cognitive distortion to catastrophize about itch, which leads to a vicious spiral along with habitual scratching behavior and skin lesions. Data are presented in this review indicating that while skin immune system dysfunction initiates pathologic changes in atopic dermatitis, brain neural network and stress system alterations can promote the progression of this condition. It is also suggested that cognitive distortion contributes to pathology in atopic dermatitis as with some psychiatric disorders and chronic pain. The proposed mechanistic model could lead to development of novel medications for slowing or terminating the relentless progression of this disorder. SIGNIFICANCE STATEMENT: Although conventional pharmacological interventions focusing on skin homeostasis and itch occurrence significantly attenuate clinical signs in atopic dermatitis patients, achievement of 100% improvement is less than 40% in several double-blind, randomized, placebo-controlled trials. Our model predicts that itch cognitive distortion, due to dorsolateral prefrontal cortex disturbance, can significantly contribute to the progression of atopic dermatitis and that agents capable of improving brain neural network, stress system, and skin homeostasis may be effective as interventions in the treatment of this condition.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
9
|
Bo JH, Wang JX, Wang XL, Jiao Y, Jiang M, Chen JL, Hao WY, Chen Q, Li YH, Ma ZL, Zhu GQ. Dexmedetomidine Attenuates Lipopolysaccharide-Induced Sympathetic Activation and Sepsis via Suppressing Superoxide Signaling in Paraventricular Nucleus. Antioxidants (Basel) 2022; 11:antiox11122395. [PMID: 36552603 PMCID: PMC9774688 DOI: 10.3390/antiox11122395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Sympathetic overactivity contributes to the pathogenesis of sepsis. The selective α2-adrenergic receptor agonist dexmedetomidine (DEX) is widely used for perioperative sedation and analgesia. We aimed to determine the central roles and mechanisms of DEX in attenuating sympathetic activity and inflammation in sepsis. Sepsis was induced by a single intraperitoneal injection of lipopolysaccharide (LPS) in rats. Effects of DEX were investigated 24 h after injection of LPS. Bilateral microinjection of DEX in the paraventricular nucleus (PVN) attenuated LPS-induced sympathetic overactivity, which was attenuated by the superoxide dismutase inhibitor DETC, cAMP analog db-cAMP or GABAA receptor antagonist gabazine. Superoxide scavenger tempol, NADPH oxidase inhibitor apocynin, adenylate cyclase inhibitor SQ22536 or PKA inhibitor Rp-cAMP caused similar effects to DEX in attenuating LPS-induced sympathetic activation. DEX inhibited LPS-induced superoxide and cAMP production, as well as NADPH oxidase, adenylate cyclase and PKA activation. The roles of DEX in reducing superoxide production and NADPH oxidase activation were attenuated by db-cAMP or gabazine. Intravenous infusion of DEX inhibited LPS-induced sympathetic overactivity, NOX activation, superoxide production, TNF-α and IL-1β upregulation in the PVN and plasma, as well as lung and renal injury, which were attenuated by the PVN microinjection of yohimbine and DETC. We conclude that activation of α2-adrenergic receptors with DEX in the PVN attenuated LPS-induced sympathetic overactivity by reducing NADPH oxidase-dependent superoxide production via both inhibiting adenylate cyclase-cAMP-PKA signaling and activating GABAA receptors. The inhibition of NADPH oxidase-dependent superoxide production in the PVN partially contributes to the roles of intravenous infusion of DEX in attenuating LPS-induced sympathetic activation, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jin-Hua Bo
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yang Jiao
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ming Jiang
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Zheng-Liang Ma
- Department of Anesthesiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (Z.-L.M.); (G.-Q.Z.)
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Z.-L.M.); (G.-Q.Z.)
| |
Collapse
|
10
|
Cayupe B, Troncoso B, Morgan C, Sáez-Briones P, Sotomayor-Zárate R, Constandil L, Hernández A, Morselli E, Barra R. The Role of the Paraventricular-Coerulear Network on the Programming of Hypertension by Prenatal Undernutrition. Int J Mol Sci 2022; 23:ijms231911965. [PMID: 36233268 PMCID: PMC9569920 DOI: 10.3390/ijms231911965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets. In the present review, we summarize the neuroendocrine and neuroplastic modifications that underlie maladaptive mechanisms related to chronic hypertension programming after early undernutrition. First, we analyzed the role of glucocorticoids on the mechanism of long-term programming of hypertension. Secondly, we discussed the pathological plastic changes at the paraventricular nucleus of the hypothalamus that contribute to the development of chronic hypertension in animal models of prenatal undernutrition, dissecting the neural network that reciprocally communicates this nucleus with the locus coeruleus. Finally, we propose an integrated and updated view of the main neuroendocrine and central circuital alterations that support the occurrence of chronic increases of blood pressure in prenatally undernourished animals.
Collapse
Affiliation(s)
- Bernardita Cayupe
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Blanca Troncoso
- Escuela de Enfermería, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago 7510157, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
- Correspondence: ; Tel.: +56-983831083
| |
Collapse
|
11
|
Chanaday NL, Kavalali ET. Role of the endoplasmic reticulum in synaptic transmission. Curr Opin Neurobiol 2022; 73:102538. [PMID: 35395547 PMCID: PMC9167765 DOI: 10.1016/j.conb.2022.102538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Neurons possess a complex morphology spanning long distances and a large number of subcellular specializations such as presynaptic terminals and dendritic spines. This structural complexity is essential for maintenance of synaptic junctions and associated electrical as well as biochemical signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, vesicular trafficking, and proteostasis events that underlie autonomous functions of numerous subcellular compartments. However, based on its geometric complexity spanning the whole neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments across the neuron and coordinates their interactions with the soma. In this article, we review recent work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission and plasticity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
12
|
Hypertension in Prenatally Undernourished Young-Adult Rats Is Maintained by Tonic Reciprocal Paraventricular-Coerulear Excitatory Interactions. Molecules 2021; 26:molecules26123568. [PMID: 34207980 PMCID: PMC8230629 DOI: 10.3390/molecules26123568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.
Collapse
|
13
|
Domingos-Souza G, Martinez D, Sinkler S, Heesch CM, Kline DD. Alpha adrenergic receptor signaling in the hypothalamic paraventricular nucleus is diminished by the chronic intermittent hypoxia model of sleep apnea. Exp Neurol 2021; 335:113517. [PMID: 33132201 PMCID: PMC7750300 DOI: 10.1016/j.expneurol.2020.113517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a model for obstructive sleep apnea. The paraventricular nucleus (PVN) of the hypothalamus has been suggested to contribute to CIH-induced exaggerated cardiorespiratory reflexes, sympathoexcitation and hypertension. This may occur, in part, via activation of the dense catecholaminergic projections to the PVN that originate in the brainstem. However, the contribution of norepinephrine (NE) and activation of its alpha-adrenergic receptors (α-ARs) in the PVN after CIH exposure is unknown. We hypothesized CIH would increase the contribution of catecholaminergic input. To test this notion, we determined the expression of α-AR subtypes, catecholamine terminal density, and synaptic properties of PVN parvocellular neurons in response to α-AR activation in male Sprague-Dawley normoxic (Norm) and CIH exposed rats. CIH decreased mRNA for α1d and α2b AR. Dopamine-β-hydroxylase (DβH) terminals in the PVN were similar between groups. NE and the α1-AR agonist phenylephrine (PE) increased sEPSC frequency after Norm but not CIH. Block of α1-ARs with prazosin alone did not alter sEPSCs after either Norm or CIH but did prevent agonist augmentation of sEPSC frequency following normoxia. These responses to NE were mimicked by PE during action potential block suggesting presynaptic terminal alterations in CIH. Altogether, these results demonstrate that α1-AR activation participates in neuronal responses in Norm, but are attenuated after CIH. These results may provide insight into the cardiovascular, respiratory and autonomic nervous systems alterations in obstructive sleep apnea.
Collapse
Affiliation(s)
- Gean Domingos-Souza
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - Diana Martinez
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - Steven Sinkler
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - Cheryl M Heesch
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - David D Kline
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
14
|
Mukai Y, Nagayama A, Itoi K, Yamanaka A. Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 2020; 10:13639. [PMID: 32788592 PMCID: PMC7424526 DOI: 10.1038/s41598-020-70481-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The stress response is a physiological system for adapting to various internal and external stimuli. Corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus (PVN-CRF neurons) are known to play an important role in the stress response as initiators of the hypothalamic-pituitary-adrenal axis. However, the mechanism by which activity of PVN-CRF neurons is regulated by other neurons and bioactive substances remains unclear. Here, we developed a screening method using calcium imaging to identify how physiological substances directly affect the activity of PVN-CRF neurons. We used acute brain slices expressing a genetically encoded calcium indicator in PVN-CRF neurons using CRF-Cre recombinase mice and an adeno-associated viral vector under Cre control. PVN-CRF neurons were divided into ventral and dorsal portions. Bath application of candidate substances revealed 12 substances that increased and 3 that decreased intracellular calcium concentrations. Among these substances, angiotensin II and histamine mainly increased calcium in the ventral portion of the PVN-CRF neurons via AT1 and H1 receptors, respectively. Conversely, carbachol mainly increased calcium in the dorsal portion of the PVN-CRF neurons via both nicotinic and muscarinic acetylcholine receptors. Our method provides a precise and reliable means of evaluating the effect of a substance on PVN-CRF neuronal activity.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Ayako Nagayama
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan. .,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|