1
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
2
|
Hao X, Li C, Lv Y, Zhou T, Tian H, Ma Y, Ding J, Li X, Wang Y, Wang L, Yang P. MPZ gene variant site in Chinese patients with Charcot-Marie-Tooth disease. Mol Genet Genomic Med 2022; 10:e1890. [PMID: 35174662 PMCID: PMC9000946 DOI: 10.1002/mgg3.1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Background Charcot–Marie–Tooth disease (CMT) is a hereditary monogenic peripheral nerve disease. Variants in the gene encoding myelin protein zero (MPZ) lead to CMT, and different variants have different clinical phenotypes. A variant site, namely, c.389A > G (p.Lys130Arg), in the MPZ gene has been found in Chinese people. The pathogenicity of this variant has been clarified through pedigrees, and peripheral blood‐related functional studies have been conducted. Method Whole‐exome sequencing and Sanger sequencing were used to detect the c.389A > G (p.Lys130Arg) variant in the MPZ gene in family members of the proband. Physical examination was performed in the case group to assess the clinical characteristics of MPZ site variants. The expression of MPZ and phosphorylated MPZ in the blood of 12 cases and 12 randomly selected controls was compared by RT–qPCR, Western blotting, and ELISA. Results The proband and 12 of her family members presented the AG genotype with different clinical manifestations. The expression of MPZ mRNA in the case group was increased compared with that in the control group, and the levels of MPZ and phosphorylated MPZ in peripheral blood were higher than those in normal controls. Conclusion The heterozygous genotype of the c.389A > G (p.Lys130Arg) variant in the MPZ gene mediated the increase in MPZ and phosphorylated MPZ levels in peripheral blood and was found to be involved with CMT.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Chong Li
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Yunguo Lv
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Tongtong Zhou
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Hao Tian
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Yaru Ma
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Ping Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Chen B, Zhang Z, Chen N, Li W, Pan H, Wang X, Ren Y, Shi Y, Tai H, Niu S. Two Novel Myelin Protein Zero Mutations in a Group of Chinese Patients. Front Neurol 2021; 12:734515. [PMID: 34925207 PMCID: PMC8674198 DOI: 10.3389/fneur.2021.734515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the myelin protein zero gene are responsible for the autosomal dominant Charcot-Marie-Tooth disease (CMT). We summarized the genetic and clinical features of six unrelated Chinese families and the genetic spectrum of Chinese patients with myelin protein zero (MPZ) mutations. Our study reports data from a group of Chinese patients consisting of five males and one female with the age of disease onset ranging from 16 to 55 years. The initial symptom in all the patients was the weakness of the lower limbs. Electrophysiological presentations suggested chronic progressive sensorimotor demyelinating polyneuropathy. Overall six mutations were identified in the cohort, including four known mutations [c.103G>T (p.D35Y), c.233C>T (p.S78L), c.293G>A (p.R98H), and c.449-1G>T], and two novel mutations [c.67+4A>G with a mild CMT1B phenotype, and (c.79delG) p.A27fs with a rapidly progressive CMT1B phenotype]. According to the literature review, there are 35 Chinese families with 28 different MPZ mutations. The MPZ mutational spectrum in Chinese patients is very heterogeneous and differs from that of Japanese and Korean individuals, although they do share several common hot spot mutations.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Na Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Monogenic Disease Diagnosis Center for Neurological Disorders, Precision Medicine Research Center for Neurological Disorders, Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuting Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Felice KJ, Whitaker CH, Khorasanizadeh S. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single-site study. Muscle Nerve 2021; 64:454-461. [PMID: 34232518 DOI: 10.1002/mus.27368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Sadaf Khorasanizadeh
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
5
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
6
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
7
|
Chen CX, Li JQ, Dong HL, Liu GL, Bai G, Wu ZY. Identification and functional characterization of novel GDAP1 variants in Chinese patients with Charcot-Marie-Tooth disease. Ann Clin Transl Neurol 2020; 7:2381-2392. [PMID: 33136338 PMCID: PMC7732252 DOI: 10.1002/acn3.51233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To identify and characterize the pathogenicity of novel variants in Chinese patients with Charcot–Marie–Tooth disease. Methods Multiplex ligation‐dependent probe amplification (MLPA) and whole‐exome sequencing (WES) were performed in 30 unrelated CMT patients. Minigene assay was used to verify the effect of a novel splicing variant (c.694+1G>A) on pre‐mRNA. Primary fibroblast cell lines were established from skin biopsies to characterize the biological effects of the novel variants p.L26R and p.S169fs. The mitochondrial structure was observed by an electron microscope. The expression level of protein was analyzed by Western Blotting. Mitochondrial dynamics and mitochondrial membrane potential (MMP, Δψm) were analyzed via immunofluorescence study. Mitochondrial ATP levels were analyzed via bioluminescence assay. The rate of oxygen consumption was measured with a Seahorse Bioscience XF‐96 extracellular flux analyzer. Results We identified 10 pathogenic variants in three known CMT related genes, including three novel variants (p.L26R, p.S169fs, c.694+1G>A) and one known pathogenic variant (p.R120W) in GDAP1. Further, we described the clinical features of patients carrying pathogenic variants in GDAP1 and found that almost all Chinese CMT patients with GDAP1 variants present axonal type. The effect of c.694+1G>A on pre‐mRNA was verified via minigene splice assay. Cellular biological effects showed ultrastructure damage of mitochondrial, reduced protein levels, different patterns of mitochondrial dynamics, decreased mitochondrial membrane potential (Δψm), ATP content, and defects in respiratory capacity in the patient carrying p.L26R and p.S169fs in GDAP1. Interpretation Our results broaden the genetic spectrum of GDAP1 and provided functional evidence for mitochondrial pathways in the pathogenesis of GDAP1 variants.
Collapse
Affiliation(s)
- Cong-Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jia-Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Bai
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Granger N, Luján Feliu-Pascual A, Spicer C, Ricketts S, Hitti R, Forman O, Hersheson J, Houlden H. Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model. PeerJ 2019; 7:e7983. [PMID: 31772832 PMCID: PMC6875392 DOI: 10.7717/peerj.7983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023] Open
Abstract
Background Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease. Methods For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens. Results The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results. Conclusions This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.
Collapse
Affiliation(s)
- Nicolas Granger
- Royal Veterinary College, University of London, Hatfield, United Kingdom.,Bristol Veterinary Specialists, CVS Referrals, Bristol, United Kingdom
| | | | - Charlotte Spicer
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| | - Sally Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Rebekkah Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Oliver Forman
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
| |
Collapse
|
9
|
He J, Guo L, Lin S, Chen W, Xu G, Cai B, Xu L, Hong J, Qiu L, Wang N, Chen W. ATP1A1mutations cause intermediate Charcot‐Marie‐Tooth disease. Hum Mutat 2019; 40:2334-2343. [DOI: 10.1002/humu.23886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/18/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jin He
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| | - Lingling Guo
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Shan Lin
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Wenfeng Chen
- Institute of Life SciencesFuzhou University Fuzhou China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Bin Cai
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| | - Liuqing Xu
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Jingmei Hong
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Liangliang Qiu
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| |
Collapse
|
10
|
Chen C, Dong H, Wei Q, Li L, Yu H, Li J, Liu G, Li H, Bai G, Ma H, Wu Z. Genetic spectrum and clinical profiles in a southeast Chinese cohort of Charcot‐Marie‐Tooth disease. Clin Genet 2019; 96:439-448. [PMID: 31372974 DOI: 10.1111/cge.13616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Cong‐Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
- Department of Neurology and Institute of NeurologyFirst Affiliated Hospital, Fujian Medical University Fuzhou China
| | - Hai‐Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Li‐Xi Li
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan University Shanghai China
| | - Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Jia‐Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Gong‐Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Hong‐Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Ge Bai
- Institute of Neuroscience and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Huan Ma
- Institute of Neuroscience and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| |
Collapse
|
11
|
Mutation update for myelin protein zero-related neuropathies and the increasing role of variants causing a late-onset phenotype. J Neurol 2019; 266:2629-2645. [DOI: 10.1007/s00415-019-09453-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023]
|
12
|
Pareyson D, Stojkovic T, Reilly MM, Leonard-Louis S, Laurà M, Blake J, Parman Y, Battaloglu E, Tazir M, Bellatache M, Bonello-Palot N, Lévy N, Sacconi S, Guimarães-Costa R, Attarian S, Latour P, Solé G, Megarbane A, Horvath R, Ricci G, Choi BO, Schenone A, Gemelli C, Geroldi A, Sabatelli M, Luigetti M, Santoro L, Manganelli F, Quattrone A, Valentino P, Murakami T, Scherer SS, Dankwa L, Shy ME, Bacon CJ, Herrmann DN, Zambon A, Tramacere I, Pisciotta C, Magri S, Previtali SC, Bolino A. A multicenter retrospective study of charcot-marie-tooth disease type 4B (CMT4B) associated with mutations in myotubularin-related proteins (MTMRs). Ann Neurol 2019; 86:55-67. [PMID: 31070812 DOI: 10.1002/ana.25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease 4B1 and 4B2 (CMT4B1/B2) are characterized by recessive inheritance, early onset, severe course, slowed nerve conduction, and myelin outfoldings. CMT4B3 shows a more heterogeneous phenotype. All are associated with myotubularin-related protein (MTMR) mutations. We conducted a multicenter, retrospective study to better characterize CMT4B. METHODS We collected clinical and genetic data from CMT4B subjects in 18 centers using a predefined minimal data set including Medical Research Council (MRC) scores of nine muscle pairs and CMT Neuropathy Score. RESULTS There were 50 patients, 21 of whom never reported before, carrying 44 mutations, of which 21 were novel and six representing novel disease associations of known rare variants. CMT4B1 patients had significantly more-severe disease than CMT4B2, with earlier onset, more-frequent motor milestones delay, wheelchair use, and respiratory involvement as well as worse MRC scores and motor CMT Examination Score components despite younger age at examination. Vocal cord involvement was common in both subtypes, whereas glaucoma occurred in CMT4B2 only. Nerve conduction velocities were similarly slowed in both subtypes. Regression analyses showed that disease severity is significantly associated with age in CMT4B1. Slopes are steeper for CMT4B1, indicating faster disease progression. Almost none of the mutations in the MTMR2 and MTMR13 genes, responsible for CMT4B1 and B2, respectively, influence the correlation between disease severity and age, in agreement with the hypothesis of a complete loss of function of MTMR2/13 proteins for such mutations. INTERPRETATION This is the largest CMT4B series ever reported, demonstrating that CMT4B1 is significantly more severe than CMT4B2, and allowing an estimate of prognosis. ANN NEUROL 2019.
Collapse
Affiliation(s)
- Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tanya Stojkovic
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah Leonard-Louis
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Matilde Laurà
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Julian Blake
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, United Kingdom
| | - Yesim Parman
- Istanbul University, Istanbul Faculty of Medicine, Neurology Dep. Istanbul, Turkey
| | - Esra Battaloglu
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Meriem Tazir
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Mounia Bellatache
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Nicolas Lévy
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Service Système Nerveux Périphérique, Muscle et SLA, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Raquel Guimarães-Costa
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Sharham Attarian
- Reference center for neuromuscular disorders and ALS, CHU La Timone, Aix-Marseille University, Marseille, France
| | - Philippe Latour
- Center of Biology and Pathology Laboratory of Molecular Neurogenetics, Hospices Civils, Lyon, France
| | - Guilhem Solé
- Reference center for neuromuscular disorders AOC (Atlantique Occitanie Caraibes), CHU de Bordeaux, Bordeaux, France
| | - André Megarbane
- Institut Jérôme Lejeune, Paris, France.,INOVIE, Beirut, Lebanon
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Giulia Ricci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Mario Sabatelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Centro Clinico Nemo Adulti Rome, Rome, Italy.,Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy
| | - Marco Luigetti
- Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy.,UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Aldo Quattrone
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Paola Valentino
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | - Chelsea J Bacon
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | | | - Alberto Zambon
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|