1
|
Lannoo MJ, Stiles RM. The Use of Cognition by Amphibians Confronting Environmental Change: Examples from the Behavioral Ecology of Crawfish Frogs ( Rana areolata). Animals (Basel) 2025; 15:736. [PMID: 40076019 PMCID: PMC11898707 DOI: 10.3390/ani15050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Amphibian conservation concerns frequently center on the idea of 'saving' them, with the underlying assumption they are the passive victims of anthropogenic environmental change. But this approach ignores the physiological, biochemical, and behavioral flexibility amphibians have employed since they first evolved ~365 million years ago. One overlooked advantage amphibians possess in the struggle for survival, and one humans might use in their efforts to conserve them, is their brains share the same blueprint as human brains, which allows them to acquire knowledge and understanding through experiences-in other words, amphibians have cognitive capabilities that assist them in their effort to survive. Here, we use four examples from our work on the behavioral ecology of Crawfish Frogs (Rana areolata) to form hypotheses about how cognition affects amphibian reaction to environmental and social change. The first two examples describe Crawfish Frog responses to seasonality and reproductive status, the third details their reaction to ecological disturbance, and the fourth describes how their response to the same stimulus changes with growth/age. In each example, we detail the neuronal circuitry thought to be involved and hypothesize the role of cognition. We propose that as one component of our fight to conserve amphibians, researchers should consider the full range of anatomical, physiological, biochemical, and behavioral features amphibians themselves employ in their defense, which are features responsible for their historical evolutionary success up until the Anthropocene. Further, we submit that acknowledging amphibians possess cognitive abilities can enrich interpretations of not only behavioral and ecological observations but also of neuroanatomical and neurophysiological results.
Collapse
Affiliation(s)
- Michael J. Lannoo
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Rm 135 Holmstedt Hall-ISU, Terre Haute, IN 47809, USA
| | - Rochelle M. Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, CA 94132, USA;
| |
Collapse
|
2
|
Manzano A, Abdala V. An overview of the osseous palmar sesamoid in Anura, with the particular case of some Rhinella species. PeerJ 2023; 11:e15063. [PMID: 37214098 PMCID: PMC10194070 DOI: 10.7717/peerj.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 05/24/2023] Open
Abstract
Background Sesamoids are generally regarded as structures that are not part of the tetrapod body plan. The presence of a palmar sesamoid is assumed to serve as a distribution point for the forces of the flexor digitorum communis muscle to the flexor tendons of the digits, which are embedded in the flexor plate. It has been considered that the palmar sesamoid is present in most anuran groups, and it has been suggested that it acts by inhibiting the closing of the palm, preventing grasping. Typical arboreal anuran groups lack a palmar sesamoid and flexor plate, a pattern shared with other tetrapod groups, which can retain a reduced sesamoid and flexor plate. We focus on the anatomical structure of the Rhinella group, which includes species that present an osseous palmar sesamoid and climb bushes or trees to avoid depredation or escape dangerous situations, and can exhibit scansorial and arboreal behaviors. We also add data on the bony sesamoids of 170 anuran species to study the anatomy and evolution of the osseous palmar sesamoid within this amphibian group. Our objective is to bring an overview of the osseous palmar sesamoid in anurans, unveiling the relationship between this element of the manus, its phylogeny, and the anuran habitat use. Methods Skeletal whole-mount specimens of Rhinella were cleared and double-dyed to describe the sesamoid anatomy and related tissues. We review and describe the palmar sesamoid of 170 anuran species from CT images downloaded from Morphosource.org, representing almost all Anuran families. We performed an standard ancestral state reconstruction by optimizing two selected characters (osseous palmar sesamoid presence, distal carpal palmar surface) along with the habitat use of the sampled taxa, using parsimony with Mesquite 3.7. Results Our primary finding is that sesamoid optimization in the anuran phylogeny revealed that its presence is associated with certain clades and not as widespread as previously anticipated. Additionally, we will also be delving into other important outcomes of our study that are relevant to those working in the field of anuran sesamoids. The osseous palmar sesamoid is present in the clade Bufonidae-Dendrobatidae-Leptodactylidae-Brachicephalidae that we named as PS clade, and also in the archeobatrachian pelobatoid Leptobranchium, all strongly terrestrial and burrowing species, though with exceptions. The osseous palmar sesamoid is always present in Bufonidae, but varies in form and size, depending on the mode that they use their manus, such as in the Rhinella margaritifera which has a cylindrical one and also grasping abilities that involve closing the manus. The scattered presence of the bony palmar sesamoid among anuran clades raises the question whether this sesamoid can be present with a different tissular composition in other groups.
Collapse
Affiliation(s)
- Adriana Manzano
- Cátedra de Embriología y Anatomía Animal. Facultad de Ciencias y Tecnología, Universidad Autónoma de Entre Ríos, Diamante, Entre Ríos, Argentina
- Laboratorio de Herpetología, CICyTTP- Consejo Nacional de Ciencia y Tecnología, Diamante, Entre Ríos, Argentina
| | - Virginia Abdala
- Facultad de Cs. Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
- IBN CONICET-UNT, CONICET-UNT, Horco Molle - Yerba Buena, Tucumán, Argentina
| |
Collapse
|
3
|
Vera MC, Ferretti JL, Cointry GR, Abdala V. Hind limb muscles influence the architectural properties of long bones in frogs. J Anat 2022; 241:702-715. [PMID: 35834300 PMCID: PMC9358750 DOI: 10.1111/joa.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Mechanostat Theory states that osteocytes sense both the intensity and directionality of the strains induced by mechanical usage and modulate the bone design accordingly. In long bones, this process may adapt anterior-posterior and lateral-medial strength to their mechanical environment showing regional specificity. Anuran species are ideal for analyzing the muscle-bone relationships related to the different mechanical stresses induced by their many locomotor modes and habitat uses. This work aimed to explore the relationships between indicators of the force of the most relevant muscles to locomotion and the mechanical properties of femur and tibia fibula in preserved samples of three anuran species with different habitat use (aquatic, arboreal) and locomotion modes (swimmer, jumper, walker/climber). For that purpose, we measured the anatomical cross-sectional area of each dissected muscle and correlated it with the moments of inertia and bone strength indices. Significant, species-specific covariations between muscle and bone parameters were observed. Pseudis platensis, the aquatic swimmer, showed the largest muscles, followed by Boana faber, the jumper and Phyllomedusa sauvagii, the walker/climber. As we expected, bigger muscles correlate with bone parameters in all the species. Nevertheless, smaller muscles also play an important role in bone design. In aquatic species, muscle interaction enhances mostly lateral bending strength throughout the femur and lateral and antero-posterior bending strength in the tibia fibula. In the jumper species, muscles affected the femur and tibia fibula mostly in anterior-posterior bending. In the walker/climber species, responses involving both antero-posterior and lateral bending strengths were observed in the femur and tibia fibula. These results show that bones will be more or less resistant to lateral and antero-posterior bending according to the different mechanical challenges of locomotion in aquatic vs. arboreal habitats. This study provides new evidence of the muscle-bone relationships in three frog species associated with their different locomotion and habitat uses, highlighting the crucial role of muscle in determining the architectural properties of bones.
Collapse
Affiliation(s)
- Miriam Corina Vera
- Laboratorio de Genética EvolutivaInstituto de Biología Subtropical, Universidad Nacional de Misiones‐CONICETMisionesArgentina
| | - José Luis Ferretti
- Facultad de Ciencias MédicasCentro de Estudios de Metabolismo Fosfocálcico, Universidad Nacional de Rosario‐CONICETSanta FeArgentina
| | - Gustavo Roberto Cointry
- Facultad de Ciencias MédicasCentro de Estudios de Metabolismo Fosfocálcico, Universidad Nacional de Rosario‐CONICETSanta FeArgentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, Universidad Nacional de Tucumán‐CONICETTucumánArgentina
- Cátedra de Biología General, Facultad de Ciencias Naturales e IMLUniversidad Nacional de TucumánTucumánArgentina
| |
Collapse
|
4
|
Peters H, Laberge F, Heyland A. Latent effect of larval rearing environment on post-metamorphic brain growth in an anuran amphibian. ZOOLOGY 2022; 152:126011. [DOI: 10.1016/j.zool.2022.126011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
5
|
Vassallo AI, Manzano A, Abdala V, Muzio RN. Can Anyone Climb? The Skills of a Non-specialized Toad and its Bearing on the Evolution of New Niches. Evol Biol 2021. [DOI: 10.1007/s11692-021-09539-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Clement AM, Mensforth CL, Challands TJ, Collin SP, Long JA. Brain Reconstruction Across the Fish-Tetrapod Transition; Insights From Modern Amphibians. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The fish-tetrapod transition (which incorporates the related fin-limb and water-land transitions) is celebrated as one of the most important junctions in vertebrate evolution. Sarcopterygian fishes (the “lobe-fins”) are today represented by lungfishes and coelacanths, but during the Paleozoic they were much more diverse. It was some of these sarcopterygians, a lineage of the tetrapodomorph fishes, that gave rise to tetrapods (terrestrial vertebrates with limbs bearing digits). This spectacular leap took place during the Devonian Period. Due to the nature of preservation, it is the hard parts of an animal’s body that are most likely to fossilize, while soft tissues such as muscular and brain tissues, typically fail to do so. Thus, our understanding of the adaptations of the hard skeletal structures of vertebrates is considerably greater than that of the soft tissue systems. Fortunately, the braincases of early vertebrates are often ossified and thereby have the potential to provide detailed morphological information. However, the correspondence between brain and endocast (an internal mold of the cavity) has historically been considered poor in most “lower” vertebrates and consequently neglected in such studies of brain evolution. Despite this, recent work documenting the spatial relationship in extant basal sarcopterygians (coelacanth, lungfish, axolotl, and salamander) has highlighted that this is not uniformly the case. Herein, we quantify and illustrate the brain-endocast relationship in four additional extant basal tetrapod exemplars: neobatrachian anurans (frogs) Breviceps poweri and Ceratophrys ornata; and gymnophionans (caecilians) Gegeneophis ramaswamii and Rhinatrema bivittatum. We show that anurans and caecilians appear to have brains that fill their endocasts to a similar degree to that of lungfishes and salamanders, but not coelacanth. Ceratophrys has considerably lower correspondence between the brain and endocast in the olfactory tract and mesencephalic regions, while Breviceps has low correspondence along its ventral endocranial margin. The brains of caecilians reflect their endocasts most closely (vol. ∼70%). The telencephalon is tightly fitted within the endocast in all four taxa. Our findings highlight the need to adequately assess the brain-endocast relationship in a broad range of vertebrates, in order to inform neural reconstructions of fossil taxa using the Extant Phylogenetic Bracket approach and future studies of brain evolution.
Collapse
|
7
|
Breen AJ, Sugasawa S, Healy SD. Manipulative and Technological Skills Do Not Require a Slow Life History. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.635802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
DeCasien AR, Higham JP. Relative Cerebellum Size Is Not Sexually Dimorphic across Primates. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:93-101. [PMID: 32791505 DOI: 10.1159/000509070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Substantive sex differences in behavior and cognition are found in humans and other primates. However, potential sex differences in primate neuroanatomy remain largely unexplored. Here, we investigate sex differences in the relative size of the cerebellum, a region that has played a major role in primate brain evolution and that has been associated with cognitive abilities that may be subject to sexual selection in primates. METHODS We compiled individual volumetric and sex data from published data sources and used MCMC generalized linear mixed models to test for sex effects in relative cerebellar volume while controlling for phylogenetic relationships between species. Given that the cerebellum is a functionally heterogeneous structure involved in multiple complex cognitive processes that may be under selection in males or females within certain species, and that sexual selection pressures vary so greatly across primate species, we predicted there would be no sex difference in the relative size of the cerebellum across primates. RESULTS Our results support our prediction, suggesting there is no consistent sex difference in relative cerebellum size. CONCLUSION This work suggests that the potential for sex differences in relative cerebellum size has been subject to either developmental constraint or lack of consistent selection pressures, and highlights the need for more individual-level primate neuroanatomical data to facilitate intra- and inter-specific study of brain sexual dimorphism.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, New York, USA, .,New York Consortium in Evolutionary Primatology, New York, New York, USA,
| | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|
9
|
Vera MC, Ferretti JL, Abdala V, Cointry GR. Biomechanical properties of anuran long bones: correlations with locomotor modes and habitat use. J Anat 2020; 236:1112-1125. [PMID: 32052449 DOI: 10.1111/joa.13161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross-sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter-specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter-specific differences in all measures between the distal and proximal ends and mid-diaphysis of the bones. In general, terrestrial-hopper species had the highest values. Arboreal-walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic-swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial-hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho-functional and comparative context in anuran species.
Collapse
Affiliation(s)
- Miriam Corina Vera
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical, Universidad Nacional de Misiones-CONICET, Misiones, Argentina
| | - José Luis Ferretti
- Centro de Estudios de Metabolismo Fosfocálcico, Facultad de Ciencias Médicas, Universidad Nacional de Rosario-CONICET, Santa Fe, Argentina
| | - Virginia Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina.,Instituto de Biodiversidad Neotropical, Universidad Nacional de Tucumán-CONICET, Tucumán, Argentina
| | - Gustavo Roberto Cointry
- Centro de Estudios de Metabolismo Fosfocálcico, Facultad de Ciencias Médicas, Universidad Nacional de Rosario-CONICET, Santa Fe, Argentina
| |
Collapse
|
10
|
Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 2019; 10:5560. [PMID: 31804475 PMCID: PMC6895188 DOI: 10.1038/s41467-019-13405-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
Ecomorphological studies evaluating the impact of environmental and biological factors on the brain have so far focused on morphology or size measurements, and the ecological relevance of potential multi-level variations in brain architecture remains unclear in vertebrates. Here, we exploit the extraordinary ecomorphological diversity of squamates to assess brain phenotypic diversification with respect to locomotor specialization, by integrating single-cell distribution and transcriptomic data along with geometric morphometric, phylogenetic, and volumetric analysis of high-definition 3D models. We reveal significant changes in cerebellar shape and size as well as alternative spatial layouts of cortical neurons and dynamic gene expression that all correlate with locomotor behaviours. These findings show that locomotor mode is a strong predictor of cerebellar structure and pattern, suggesting that major behavioural transitions in squamates are evolutionarily correlated with mosaic brain changes. Furthermore, our study amplifies the concept of ‘cerebrotype’, initially proposed for vertebrate brain proportions, towards additional shape characters. The cerebellum is critical in sensory-motor control and is structurally diverse across vertebrates. Here, the authors investigate the evolutionary relationship between locomotory mode and cerebellum architecture across squamates by integrating study of gene expression, cell distribution, and 3D morphology.
Collapse
|
11
|
Frýdlová P, Sedláčková K, Žampachová B, Kurali A, Hýbl J, Škoda D, Kutílek P, Landová E, Černý R, Frynta D. A gyroscopic advantage: phylogenetic patterns of compensatory movements in frogs. ACTA ACUST UNITED AC 2019; 222:jeb.186544. [PMID: 30446541 DOI: 10.1242/jeb.186544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022]
Abstract
Head and eye compensatory movements known as vestibulo-ocular and vestibulo-cervical reflexes are essential to stay orientated in space while moving. We have used a previously developed methodology focused on the detailed mathematical description of head compensatory movements in frogs without the need for any surgical procedures on the examined specimens. Our comparative study comprising 35 species of frogs from different phylogenetic backgrounds revealed species-specific head compensatory abilities ensuring gaze stabilization. Moreover, we found a strong phylogenetic signal highlighting the great ability of compensatory head movements in families of Pyxicephalidae and Rhacophoridae from the Natatanura group. By contrast, families of Dendrobatidae and Microhylidae exhibited only poor or no head compensatory movements. Contrary to our expectation, the results did not corroborate an ecomorphological hypothesis anticipating a close relationship between ecological parameters and the head compensatory movements. We did not find any positive association between more complex (3D structured, arboreal or aquatic) habitats or more saltatory behavior and elevated abilities of head compensatory movements. Moreover, we found compensatory movements in most basal Archeobatrachia, giving an indication of common ancestry of these abilities in frogs that are variously pronounced in particular families. We hypothesize that the uncovered proper gaze stabilization during locomotion provided by the higher head compensatory abilities can improve or even enable visual perception of the prey. We interpret this completely novel finding as a possible gyroscopic advantage in a foraging context. We discuss putative consequences of such advanced neuromotor skills for diversification and ecological success of the Natatanura group.
Collapse
Affiliation(s)
- Petra Frýdlová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Prague, Czech Republic
| | - Kristýna Sedláčková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Prague, Czech Republic.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Topolová 748, CZ-25067 Klecany, Czech Republic
| | - Barbora Žampachová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Prague, Czech Republic.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Topolová 748, CZ-25067 Klecany, Czech Republic
| | - Anikó Kurali
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Prague, Czech Republic
| | - Jan Hýbl
- Department of Natural Science, Faculty of Biomedical Engineering, Czech Technical University, Náměstí Sítná 3105, CZ-27201 Kladno, Czech Republic
| | - David Škoda
- Department of Natural Science, Faculty of Biomedical Engineering, Czech Technical University, Náměstí Sítná 3105, CZ-27201 Kladno, Czech Republic
| | - Patrik Kutílek
- Department of Natural Science, Faculty of Biomedical Engineering, Czech Technical University, Náměstí Sítná 3105, CZ-27201 Kladno, Czech Republic
| | - Eva Landová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Prague, Czech Republic .,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Topolová 748, CZ-25067 Klecany, Czech Republic
| | - Rudolf Černý
- Department of Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15000 Prague, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 Prague, Czech Republic.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Topolová 748, CZ-25067 Klecany, Czech Republic
| |
Collapse
|
12
|
Manzano AS, Fontanarrosa G, Abdala V. Manual and pedal grasping among anurans: a review of relevant concepts with empirical approaches. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | | | - Virginia Abdala
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, UNT. Instituto de Biología Neotropical- UNT-CONICET, Horco Molle, Tucumán, Argentina
| |
Collapse
|
13
|
Quinzio SI, Fabrezi M. The peripheral nerves of Lepidobatrachus
tadpoles (Anura, Ceratophryidae). J Morphol 2018; 280:4-19. [DOI: 10.1002/jmor.20849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Silvia I. Quinzio
- Instituto de Bio y Geociencias del NOA (IBIGEO); Centro Científico Tecnológico CONICET-Salta; Salta Argentina
| | - Marissa Fabrezi
- Instituto de Bio y Geociencias del NOA (IBIGEO); Centro Científico Tecnológico CONICET-Salta; Salta Argentina
| |
Collapse
|