1
|
Santana-Coelho D, Pranske ZJ, Nolan SO, Hodges SL, Binder MS, Womble PD, Narvaiz DA, Muhammad I, Lugo JN. Neonatal immune stimulation results in sex-specific changes in ultrasonic vocalizations but does not affect seizure susceptibility in neonatal mice. Int J Dev Neurosci 2024; 84:381-391. [PMID: 38712612 DOI: 10.1002/jdn.10333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Neuroinflammation during the neonatal period has been linked to disorders such as autism and epilepsy. In this study, we investigated the early life behavioral consequences of a single injection of lipopolysaccharide (LPS) at postnatal day 10 (PD10) in mice. To assess deficits in communication, we performed the isolation-induced ultrasonic vocalizations (USVs) test at PD12. To determine if early life immune stimulus could alter seizure susceptibility, latency to flurothyl-induced generalized seizures was measured at 4 hours (hrs), 2 days, or 5 days after LPS injections. LPS had a sex-dependent effect on USV number. LPS-treated male mice presented significantly fewer USVs than LPS-treated female mice. However, the number of calls did not significantly differ between control and LPS for either sex. In male mice, we found that downward, short, and composite calls were significantly more prevalent in the LPS treatment group, while upward, chevron, and complex calls were less prevalent than in controls (p < 0.05). Female mice that received LPS presented a significantly higher proportion of short, frequency steps, two-syllable, and composite calls in their repertoire when compared with female control mice (p < 0.05). Seizure latency was not altered by early-life inflammation at any of the time points measured. Our findings suggest that early-life immune stimulation at PD10 disrupts vocal development but does not alter the susceptibility to flurothyl-induced seizures during the neonatal period. Additionally, the effect of inflammation in the disruption of vocalization is sex-dependent.
Collapse
Affiliation(s)
| | - Zachary J Pranske
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | | | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Ilyasah Muhammad
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studets, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
2
|
Jiang YH, Li T, Liu Y, Liu X, Jia S, Hou C, Chen G, Wang H, Ling S, Gao Q, Wang XR, Wang YF. Contribution of inwardly rectifying K + channel 4.1 of supraoptic astrocytes to the regulation of vasopressin neuronal activity by hypotonicity. Glia 2023; 71:704-719. [PMID: 36408843 DOI: 10.1002/glia.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K+ channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl2 . These results suggest that HOC-evoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Collapse
Affiliation(s)
- Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Neuroelectrophysiology Laboratory, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Seizures in PPT1 Knock-In Mice Are Associated with Inflammatory Activation of Microglia. Int J Mol Sci 2022; 23:ijms23105586. [PMID: 35628400 PMCID: PMC9144763 DOI: 10.3390/ijms23105586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL), the most severe form of neuronal ceroid lipofuscinoses, is caused by mutations in the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). Typical symptoms of this disease include progressive psychomotor developmental retardation, visual failure, seizures, and premature death. Here, we investigated seizure activity and relevant pathological changes in PPT1 knock-in mice (PPT1 KI). The behavior studies in this study demonstrated that PPT1 KI mice had no significant seizure activity until 7 months of age, and local field potentials also displayed epileptiform activity at the same age. The expression levels of Iba-1 and CD68 demonstrated, by Western blot analysis, the inflammatory cytokine TNF-α content measured with enzyme-linked immunosorbent assay, and the number of microglia demonstrated by immunohistochemistry (IHC) were significantly increased at age of 7 months, all of which indicate microglia activation at an age of seizure onset. The increased expression of GFAP were seen at an earlier age of 4 months, and such an increase reached its peak at age of 6 months, indicating that astrocyte activation precedes microglia. The purinergic P2X7 receptor (P2X7R) is an ATP-sensitive ionic channel that is highly expressed in microglia and is fundamental to microglial activation, proliferation, cytokines release and epilepsy. We show that the ATP concentration in hippocampal tissue in PPT1 KI mice was increased using an enhanced ATP assay kit and demonstrated that the antagonist of P2X7R, A-438079, significantly reduced seizures in PPT1 KI mice. In contrast to glial cell activation and proliferation, a significant reduction in synaptic proteins GABAAR was seen in PPT1 KI mice. These results indicate that seizure in PPT1 KI mice may be associated with microglial activation involved in ATP-sensitive P2X7R signaling and impaired inhibitory neurotransmission.
Collapse
|
4
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
5
|
Li X, Lv J, Li J, Ren X. Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Exp Ther Med 2021; 22:1021. [PMID: 34373707 PMCID: PMC8343704 DOI: 10.3892/etm.2021.10453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
As the major cause of irreversible loss of vision in adults, diabetic retinopathy (DR) is one of the most serious complications of diabetes. The imbalance of the retinal microenvironment and destruction of the blood-retinal barrier have a significant role in the progression of DR. Inward rectifying potassium channel 4.1 (Kir4.1) is located on Müller cells and is closely related to potassium homeostasis, water balance and glutamate clearance in the whole retina. The present review discusses the functions of Kir4.1 in regulating the retinal microenvironment and related biological mechanisms in DR. In the future, Kir4.1 may represent a novel alternative therapeutic target for DR through affecting the retinal microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiajun Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiazhi Li
- Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
6
|
Tovar R, Vargas A, Aranda J, Sánchez-Salido L, González-González L, Chowen JA, Rodríguez de Fonseca F, Suárez J, Rivera P. Analysis of Both Lipid Metabolism and Endocannabinoid Signaling Reveals a New Role for Hypothalamic Astrocytes in Maternal Caloric Restriction-Induced Perinatal Programming. Int J Mol Sci 2021; 22:ijms22126292. [PMID: 34208173 PMCID: PMC8230792 DOI: 10.3390/ijms22126292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal malnutrition in critical periods of development increases the risk of developing short- and long-term diseases in the offspring. The alterations induced by this nutritional programming in the hypothalamus of the offspring are of special relevance due to its role in energy homeostasis, especially in the endocannabinoid system (ECS), which is involved in metabolic functions. Since astrocytes are essential for neuronal energy efficiency and are implicated in brain endocannabinoid signaling, here we have used a rat model to investigate whether a moderate caloric restriction (R) spanning from two weeks prior to the start of gestation to its end induced changes in offspring hypothalamic (a) ECS, (b) lipid metabolism (LM) and/or (c) hypothalamic astrocytes. Monitorization was performed by analyzing both the gene and protein expression of proteins involved in LM and ECS signaling. Offspring born from caloric-restricted mothers presented hypothalamic alterations in both the main enzymes involved in LM and endocannabinoids synthesis/degradation. Furthermore, most of these changes were similar to those observed in hypothalamic offspring astrocytes in culture. In conclusion, a maternal low caloric intake altered LM and ECS in both the hypothalamus and its astrocytes, pointing to these glial cells as responsible for a large part of the alterations seen in the total hypothalamus and suggesting a high degree of involvement of astrocytes in nutritional programming.
Collapse
Affiliation(s)
- Rubén Tovar
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Andalucia Tech, Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Jesús Aranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- Andalucia Tech, Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Laura González-González
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
| | - Julie A. Chowen
- Department of Endocrinology, Instituto de Investigación Biomédica la Princesa, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- CIBEROBN (Centro de Investigación Biomédica en Red Sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, 28009 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, 28009 Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence: (J.S.); (P.R.); Tel.: +34-952614012 (J.S.); +34-952614012 (P.R.)
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (P.R.); Tel.: +34-952614012 (J.S.); +34-952614012 (P.R.)
| |
Collapse
|
7
|
de Aquino PEA, Rabelo Bezerra J, de Souza Nascimento T, Tavares J, Rosal Lustosa Í, Chaves Filho AJM, Mottin M, Macêdo Gaspar D, de Andrade GM, Tavares Neves KR, Biagini G, Silveira ER, de Barros Viana GS. A Proline Derivative-Enriched Fraction from Sideroxylon obtusifolium Protects the Hippocampus from Intracerebroventricular Pilocarpine-Induced Injury Associated with Status Epilepticus in Mice. Int J Mol Sci 2020; 21:E4188. [PMID: 32545390 PMCID: PMC7312019 DOI: 10.3390/ijms21114188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
The N-methyl-(2S,4R)-trans-4-hydroxy-l-proline-enriched fraction (NMP) from Sideroxylon obtusifolium was evaluated as a neuroprotective agent in the intracerebroventricular (icv) pilocarpine (Pilo) model. To this aim, male mice were subdivided into sham (SO, vehicle), Pilo (300 µg/1 µL icv, followed by the vehicle per os, po) and NMP-treated groups (Pilo 300 µg/1 µL icv, followed by 100 or 200 mg/kg po). The treatments started one day after the Pilo injection and continued for 15 days. The effects of NMP were assessed by characterizing the preservation of cognitive function in both the Y-maze and object recognition tests. The hippocampal cell viability was evaluated by Nissl staining. Additional markers of damage were studied-the glial fibrillary acidic protein (GFAP) and the ionized calcium-binding adaptor molecule 1 (Iba-1) expression using, respectively, immunofluorescence and western blot analyses. We also performed molecular docking experiments revealing that NMP binds to the γ-aminobutyric acid (GABA) transporter 1 (GAT1). GAT1 expression in the hippocampus was also characterized. Pilo induced cognitive deficits, cell damage, increased GFAP, Iba-1, and GAT1 expression in the hippocampus. These alterations were prevented, especially by the higher NMP dose. These data highlight NMP as a promising candidate for the protection of the hippocampus, as shown by the icv Pilo model.
Collapse
Affiliation(s)
- Pedro Everson Alexandre de Aquino
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Jéssica Rabelo Bezerra
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Tyciane de Souza Nascimento
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Juliete Tavares
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Ítalo Rosal Lustosa
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Adriano José Maia Chaves Filho
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Melina Mottin
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculty of Pharmacy, Federal University of Goiás, Goiás 74605-050, Brazil;
| | - Danielle Macêdo Gaspar
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Geanne Matos de Andrade
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Kelly Rose Tavares Neves
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60455-970, Brazil;
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil; (P.E.A.d.A.); (J.R.B.); (T.d.S.N.); (J.T.); (A.J.M.C.F.); (D.M.G.); (G.M.d.A.); (K.R.T.N.)
| |
Collapse
|
8
|
Hu QP, Huang XY, Peng F, Yang H, Wu C. MS275 reduces seizure-induced brain damage in developing rats by regulating p38 MAPK signaling pathways and epigenetic modification. Brain Res 2020; 1745:146932. [PMID: 32522630 DOI: 10.1016/j.brainres.2020.146932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Seizure is a common acute and severe disease in infants and children. Recurrent seizures or persistent seizures may cause irreversible brain damage. Mitogen activated protein kinase (MAPK) signaling pathway is associated with an inflammatory response, however it's involvement in the pathological process of seizures is not clear. Histone deacetylase inhibitors (HDACi) have promising neuroprotective effects through epigenetic regulation. Therefore, this study aimed to investigate the mechanism of HDACi MS275 on p38 MAPK signaling pathway and p38 histone modifications in developing rats post-seizure. Intraperitoneal administration of Pentylenetetrazole (PTZ) was used to induce developing rat seizures, and MS275 (5 or 10 mg/kg) was injected intraperitoneally 2 h before PTZ injection. Hippocampal tissues were sampled at 24 h post-seizures for protein and mRNA levels of p38、MK2、CREB and IL-6. Neuronal apoptosis and microglia activation significantly increased after PTZ treatment. However, pretreatment with MS275 attenuated these effects as well as increased seizure latency and decreased seizure scores. Furthermore, MS275 was found to inhibit the expression of p38 by increasing histone H3 and H4 acetylation and decreasing histone H3 and H4 methylation. This study thereby demonstrates that HDACi MS275 can reduce the inflammatory response associated with seizure-induced brain injury through inhibiting the p38 MAPK signaling pathway and p38 gene expression.
Collapse
Affiliation(s)
- Qing-Peng Hu
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Yi Huang
- Department of Function Examination, The Second Hospital,University of South China, Hengyang, Hunan 421001, China.
| | - Fang Peng
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Hui Yang
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Can Wu
- Department of Pediatrics, The Second Hospital, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
9
|
Semple BD, Dill LK, O'Brien TJ. Immune Challenges and Seizures: How Do Early Life Insults Influence Epileptogenesis? Front Pharmacol 2020; 11:2. [PMID: 32116690 PMCID: PMC7010861 DOI: 10.3389/fphar.2020.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The development of epilepsy, a process known as epileptogenesis, often occurs later in life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain trauma, or infection. These insults share common pathophysiological pathways involving innate immune activation including neuroinflammation, which is proposed to play a critical role in epileptogenesis. This review provides a comprehensive overview of the latest preclinical evidence demonstrating that early life immune challenges influence neuronal hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the range of brain insults that may promote the onset of chronic recurrent spontaneous seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation), perinatal injuries (e.g. hypoxic–ischemic injury, perinatal stroke), and insults sustained during early postnatal life—such as fever-induced febrile seizures, traumatic brain injuries, infections, and environmental stressors. Importantly, all of these insults represent, to some extent, an immune challenge, triggering innate immune activation and implicating both central and systemic inflammation as drivers of epileptogenesis. Increasing evidence suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling pathways are important mediators of seizure onset and recurrence, as well as neuronal network plasticity changes in this context. Our current understanding of how early life immune challenges prime microglia and astrocytes will be explored, as well as how developmental age is a critical determinant of seizure susceptibility. Finally, we will consider the paradoxical phenomenon of preconditioning, whereby these same insults may conversely provide neuroprotection. Together, an improved appreciation of the neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life insults may provide insight into opportunities to develop novel immunological anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W. Advances in the Potential Biomarkers of Epilepsy. Front Neurol 2019; 10:685. [PMID: 31312171 PMCID: PMC6614180 DOI: 10.3389/fneur.2019.00685] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a group of chronic neurological disorders characterized by recurrent, spontaneous, and unpredictable seizures. It is one of the most common neurological disorders, affecting tens of millions of people worldwide. Comprehensive studies on epilepsy in recent decades have revealed the complexity of epileptogenesis, in which immunological processes, epigenetic modifications, and structural changes in neuronal tissues have been identified as playing a crucial role. This review discusses the recent advances in the biomarkers of epilepsy. We evaluate the possible molecular background underlying the clinical changes observed in recent studies, focusing on therapeutic investigations, and the evidence of their safety and efficacy in the human population. This article reviews the pathophysiology of epilepsy, including recent reports on the effects of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical implications, along with further perspectives in epilepsy research.
Collapse
Affiliation(s)
- Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK. The Impact of the Ketogenic Diet on Glial Cells Morphology. A Quantitative Morphological Analysis. Neuroscience 2019; 413:239-251. [PMID: 31220541 DOI: 10.1016/j.neuroscience.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Ketogenic diet is reported to protect against cognitive decline, drug-resistant epilepsy, Alzheimer's Disease, damaging effect of ischemic stroke and many neurological diseases. Despite mounting evidence that this dietary treatment works, the exact mechanism of its protective activity is largely unknown. Ketogenic diet acts systemically, not only changing GABA signaling in neurons, but also influencing the reliance on mitochondrial respiration, known to be disrupted in many neurological diseases. Normally, human body is driven by glucose while ketogenic diet mimics starvation and energy required for proper functioning comes from fatty acids oxidation. In the brain astrocytes are believed to be the sole neural cells capable of fatty oxidation. Here we try to explain that not exclusively neurons, but also morphological changes of astroglia and/or microglia due to different metabolic state are important for the mechanism underlying the protective role of ketogenic diet. By quantifying different parameters describing cellular morphology like ramification index or fractal dimension and using Principal Component Analysis to discover the regularities between them, we demonstrate that in normal adult rat brain, ketogenic diet itself is able to change glial morphology, indicating an important role of these underappreciated cells in the brain metabolism.
Collapse
Affiliation(s)
- K Gzielo
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Z K Setkowicz
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|