1
|
He B, Dong M, Zhang Q, Bu J, Xu L, Huang S, Wang Z, Bu X, Hu M, Liu G, Liang J, Ma C, Liu G. A suture technique combining annulus fibrosis with posterior longitudinal ligament for lumbar disc herniation under endoscopy. J Orthop 2025; 65:24-30. [PMID: 39741529 PMCID: PMC11683306 DOI: 10.1016/j.jor.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose To investigate the clinical feasibility, efficacy and safety of a suture technique combining annulus fibrosus with posterior longitudinal ligament under full endoscopy in patients with lumbar disc herniation. Methods Retrospective case-control study. A total of 412 patients with lumbar disc herniation treated in our hospital from January 2020 to November 2022 were enrolled and analyzed. There were 208 males and 204 females, aged from 26 to 54 years old(average 39.9 ± 5.1). 208 patients were treated with combining annulus fibrous suture with posterior longitudinal ligament after percutaneous lumbar discectomy(PELD) (observation group)0.204 patients were treated with percutaneous lumbar discectomy(PELD) alone(control group). Operation time, blood loss, Visual Analogue scale(VAS), Oswestry disability index(ODI),Japanese Orthopedic Association(JOA), modified MacNab criteria and imaging examination were used to evaluate. Results All the 412 patients successfully completed the surgery. Complete follow-up time was 12-18 months, with an average of 15.2 ± 1.6 months. Postoperative symptoms were all significantly relieved. There was no statistically significant difference in baseline data between groups (P > 0.05). The scores of VAS,ODI and JOA at different postoperative follow-up visits were significantly lower than those before surgery (P < 0.05). There was significant difference in each group before and after surgeries (P < 0.05). The postoperative recurrence rates and reoperation rates between groups were significant different(P < 0.05). According to MacNab, the excellent and good rate was 96.2 % (200/208) in observation group and 90.7 % (185/204) in control group(P < 0.05). Conclusions The suture technique combining annulus fibrosus with posterior longitudinal ligament under full endoscopy in patients with lumbar disc herniation has satisfactory short- and mid-term clinical effect,and can effectively reduce postoperative recurrence rate, which is a safe and ideal suture technique for annulus fibrosus rupture. Clinical trial number not applicable.
Collapse
Affiliation(s)
- Bo He
- Xuzhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Minghui Dong
- Xuzhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Quan Zhang
- Xuzhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Jinhui Bu
- Xuzhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Long Xu
- Xuzhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Sen Huang
- Xuzhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Zhenfei Wang
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Xiangbo Bu
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Mengzi Hu
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Guangpu Liu
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Jun Liang
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Chao Ma
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Guangwang Liu
- XuZhou Clinical School of Xuzhou Medical University, Department of Orthopedic Surgery, XuZhou Central Hospital, XuZhou Central Hospital Affiliated to Medical School of Southeast University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| |
Collapse
|
2
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025; 25:1139-1153. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
3
|
Zheng K, Wang S, Deng M, Luo Y, Li W, Zeng L, Wang Y. Mechanisms and Therapeutic Strategies of Macrophage Polarization in Intervertebral Disc Degeneration. JOR Spine 2025; 8:e70065. [PMID: 40371270 PMCID: PMC12077540 DOI: 10.1002/jsp2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a leading cause of low back pain (LBP), contributing significantly to global disability and productivity loss. Its pathogenesis involves complex processes, including inflammation, cellular senescence, angiogenesis, fibrosis, neural ingrowth, and sensitization. Emerging evidence highlights macrophages as central immune regulators infiltrating degenerated discs, with macrophage polarization implicated in IVDD progression. However, the mechanisms linking macrophage polarization to IVDD pathology remain poorly elucidated. Methods A comprehensive literature review was conducted by searching major databases (PubMed, Web of Science, and Scopus) for studies published in the last decade (2014-2024). Keywords included "intervertebral disc degeneration," "macrophage polarization," "inflammation," "senescence," and "therapeutic strategies." Relevant articles were selected, analyzed, and synthesized to evaluate the role of macrophage polarization in IVDD. Results Macrophage polarization dynamically influences IVDD through multiple pathways. Pro-inflammatory M1 macrophages exacerbate disc degeneration by amplifying inflammatory cytokines (e.g., TNF-α, IL-1β), promoting cellular senescence, and stimulating abnormal angiogenesis and neural ingrowth. In contrast, anti-inflammatory M2 macrophages may mitigate degeneration by suppressing inflammation and enhancing tissue repair. Therapeutic strategies targeting macrophage polarization include pharmacological agents (e.g., cytokines, small-molecule inhibitors), biologic therapies, gene editing, and physical interventions. Challenges persist, such as incomplete understanding of polarization triggers, lack of targeted delivery systems, and limited translational success in preclinical models. Conclusion Macrophage polarization is a pivotal regulator of IVDD pathology, offering promising therapeutic targets. Future research should focus on elucidating polarization mechanisms, optimizing spatiotemporal control of macrophage phenotypes, and developing personalized therapies. Addressing these challenges may advance innovative strategies to halt or reverse IVDD progression, ultimately improving clinical outcomes for LBP patients.
Collapse
Affiliation(s)
- Kaiyuan Zheng
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Siyu Wang
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Meng Deng
- Department of Clinical LaboratoryThe First People's Hospital of GuangyuanGuangyuanChina
| | - Yaomin Luo
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Wen Li
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Lianlin Zeng
- Department of Rehabilitation MedicineSuining Central HospitalSuiningChina
| | - Yinxu Wang
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|
4
|
Samanta A, Yoo MJ, Koh J, Lufkin SC, Lufkin T, Kraus P. Proteomic profiling of small extracellular vesicles from bovine nucleus pulposus cells. PLoS One 2025; 20:e0324179. [PMID: 40440285 PMCID: PMC12121814 DOI: 10.1371/journal.pone.0324179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Small extracellular vesicles (small EV) are a conserved means of communication across the domains of life and lately gained more interest in mammalian non-cancerous work as non-cellular, biological therapeutic with encouraging results in recent studies of chronic degenerative diseases. The nucleus pulposus (NP) is the avascular and aneural center of an intervertebral disc (IVD), home to unique niche conditions and affected in IVD degeneration. We investigated autologous and mesenchymal stem cell (MSC) small EVs for their potential to contribute to cell and tissue homeostasis in the NP niche via mass spectrometric proteome and functional enrichment analysis using adult and fetal donors. We compared these findings to published small EV databases and MSC small EV data. We propose several mechanisms associated with NP small EVs: Membrane receptor trafficking to modify signal responses promoting niche homeostasis; Redox and energy homeostasis via metabolic enzymes delivery; Cell homeostasis via proteasome delivery and immunomodulation beyond an association with a serum protein corona. The proteome signature of small EVs generated by NP parent cells is similar to previously published small EV data, yet with a focus on supplementing anaerobic metabolism and redox balance while contributing to the maintenance of an aneural and avascular microniche.
Collapse
Affiliation(s)
- Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Sina Charlotte Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| |
Collapse
|
5
|
Huang Y, Li H, Qi L, Wang Z, Liu Z, Wu R, Chen Q, Zhu C, Sun D, Liu L, Zhang L, Feng G. NanoCRISPR-assisted biomimetic tissue-equivalent patch regenerates the intervertebral disc by inhibiting endothelial-to-mesenchymal transition. Biomaterials 2025; 322:123404. [PMID: 40398216 DOI: 10.1016/j.biomaterials.2025.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The integrity of the intervertebral disc (IVD), an immune-privileged organ protected by the blood-disc barrier, is compromised following annulus fibrosus (AF) injury. This breach facilitates angiogenesis, immune cell infiltration, and inflammation, accelerating intervertebral disc degeneration (IDD) and resulting in various clinical disorders. Current treatments fail to adequately address biological repair of AF defects and angiogenesis. Single-cell RNA sequencing analyses reveal that vascular endothelial growth factor (VEGF), secreted by IDD-associated fibrochondrocytes, is crucial in promoting angiogenesis by inducing endothelial-to-mesenchymal transition (EndoMT). This study proposes a nano-clustered regularly interspaced short palindromic repeats (CRISPR)-assisted AF patch with an aligned, polydopamine-modified nano-lamellae nanofibrous scaffold that replicates the hierarchical structure of natural AF, providing a conducive microenvironment for AF repair. A zeolitic imidazolate framework-8-based nanoCRISPR system encapsulates the CRISPR/CRISPR-associated protein 9 complex to target and eliminate VEGF-mediated angiogenic factors. In vitro studies demonstrate that the nanoCRISPR-assisted patch can enhance AF cell adhesion and migration, promote extracellular matrix deposition, knock out VEGF expression, and inhibit EndoMT. In vivo studies show its significant efficacy in promoting AF repair, inhibiting abnormal angiogenesis, and delaying IDD progression. This study presents a promising approach for structural and biological AF regeneration, addressing physical and angiogenic barriers in IVD regeneration.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hao Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zhe Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Qian Chen
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, BT9 5AH, UK
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Caparaso SM, Sankaranarayanan I, Lillyman DJ, Price TJ, Wachs RA. Single-nuclei RNA Sequencing Reveals Distinct Transcriptomic Signatures of Rat Dorsal Root Ganglia in a Chronic Discogenic Low Back Pain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639130. [PMID: 40060537 PMCID: PMC11888191 DOI: 10.1101/2025.02.19.639130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Chronic low back pain (LBP), often correlated with intervertebral disc degeneration, is a leading source of disability worldwide yet remains poorly understood. Current treatments often fail to provide sustained relief, highlighting the need to better understand the mechanisms driving discogenic LBP. During disc degeneration, the extracellular matrix degrades, allowing nociceptive nerve fibers to innervate previously aneural disc regions. Persistent mechanical and inflammatory stimulation of nociceptors can induce plastic changes within dorsal root ganglia (DRG) neurons, characterized by altered gene expression, enhanced excitability, and lowered activation thresholds. Although these transcriptional changes have been described in other pain states, including osteoarthritis, they remain underexplored in discogenic LBP. To address this gap, this study represents the first application of comprehensive single-nuclei RNA sequencing of DRG neurons in a rat model of chronic discogenic LBP. Eighteen distinct DRG subpopulations were identified and mapped to existing mouse and cross-species atlases revealing strong similarities in neuronal populations with the mouse. Differential expression analysis revealed increased expression of pain-associated genes, including Scn9a and Piezo2, and neuroinflammatory mediators such as Fstl1 and Ngfr, in LBP animals. Axial hypersensitivity, measured using grip strength, significantly correlated with increased expression of Scn9a, Fstl1, and Ngfr, which suggests their role in maintaining axial hypersensitivity in this model. These findings establish a relationship between DRG transcriptomic changes and axial hypersensitivity in a discogenic LBP model, identifying potential molecular targets for non-opioid treatments and advancing understanding of discogenic LBP mechanisms.
Collapse
Affiliation(s)
- Sydney M Caparaso
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, USA
| | - David J Lillyman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, USA
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
7
|
Song Z, Yan M, Zhang S, Hu B, Qing X, Shao Z, Chen S, Lv X, Liu H. Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system. Ageing Res Rev 2025; 104:102633. [PMID: 39701186 DOI: 10.1016/j.arr.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.
Collapse
Affiliation(s)
- Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
8
|
Peng BG. Fundamentals of intervertebral disc degeneration and related discogenic pain. World J Orthop 2025; 16:102119. [PMID: 39850042 PMCID: PMC11752479 DOI: 10.5312/wjo.v16.i1.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Lumbar intervertebral disc degeneration is thought to be the main cause of low back pain, although the mechanisms by which it occurs and leads to pain remain unclear. In healthy adult discs, vessels and nerves are present only in the outer layer of the annulus fibrosus and in the bony endplate. Animal models, and histological and biomechanical studies have shown that annulus tear or endplate injury is the initiating factor for painful disc degeneration. Injury to the disc triggers a local inflammatory repair response that activates nociceptors and promotes the synthesis of neuropeptides such as substance P and calcitonin gene-related peptide, by dorsal root ganglion neurons. These neuropeptides are transported to injured discs and act as pro-inflammatory molecules, promoting the production of an "inflammatory soup" by inducing vasodilatation and plasma extravasation as well as by promoting the release of chemical mediators from disc cells and infiltrating immune cells, causing neurogenic inflammation that leads to progressive disc degeneration and discogenic pain.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| |
Collapse
|
9
|
Peng BG, Li YC, Yang L. Role of neurogenic inflammation in intervertebral disc degeneration. World J Orthop 2025; 16:102120. [PMID: 39850033 PMCID: PMC11752484 DOI: 10.5312/wjo.v16.i1.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation. IVD cells and infiltrating immune cells express functional receptors for neuropeptides through which they receive signals from the nervous system. In return, IVD cells and immune cells produce neuropeptides and nerve growth factor, which stimulate nerve fibers. This communication generates a positive bidirectional feedback loop that can enhance the inflammatory response of the IVD. Recently emerging transient receptor potential channels have been recognized as contributors to neurogenic inflammation in the degenerative IVDs. These findings suggest that neurogenic inflammation involves complex pathophysiological interactions between sensory nerves and multiple cell types in the degenerative IVDs. Clarifying the mechanism of neurogenic inflammation in IVD degeneration may provide in-depth understanding of the pathology of discogenic low back pain.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Yong-Chao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Liang Yang
- Department of Orthopeadics, Featured Medical Center of Chinese People’s Armed Police Forces, Tianjin 300000, China
| |
Collapse
|
10
|
Yang W, Xia S, Li L, Xu J, Ji H, Yao W, Shi F. Methicillin-Resistant Staphylococcus aureus-Induced Discitis Following Acupuncture: A Case Report. Infect Drug Resist 2024; 17:5839-5846. [PMID: 39737091 PMCID: PMC11683151 DOI: 10.2147/idr.s500762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
This report describes a case of lumbar disc infection potentially induced by acupuncture in a 43-year-old male with a history of back pain. After acupuncture treatment at another hospital, the patient experienced worsened pain. Physical examination revealed tenderness at the upper lumbar intervertebral space and paravertebral percussion pain. Laboratory tests showed no bacterial growth in both aerobic and anaerobic blood cultures after 5 days, but C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were significantly elevated. CT and MRI scans revealed osteolysis of the L2/3 vertebral body and a paraspinal abscess in the left psoas muscle. The patient was treated with intravenous vancomycin (1 g every 12 hours for 4 weeks). After two weeks, CRP normalized, but ESR remained elevated. By week three, CRP increased to 61.19 mg/L, and severe anemia developed. Follow-up MRI indicated worsening of the lumbar infection. A transfusion was performed, and surgery was conducted in the fourth week. Intraoperative findings confirmed methicillin-resistant Staphylococcus aureus (MRSA) as the causative pathogen. Postoperatively, symptoms improved, and inflammatory markers normalized. This case highlights the need for standardized acupuncture practices and prompt surgical intervention in cases of infectious discitis unresponsive to conservative treatment.
Collapse
Affiliation(s)
- Weihang Yang
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, The Third People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China
| | - Shuang Xia
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, The Third People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China
| | - Liang Li
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, The Third People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China
| | - Jiahao Xu
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, The Third People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China
| | - Hongjian Ji
- Department of Pharmacy, Jiangsu Vocational College of Medicine, College of Pharmacy, Yancheng, Jiangsu, People’s Republic of China
| | - Wanglin Yao
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, The Third People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China
| | - Fengchao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, The Third People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Ogasawara S, Schol J, Sakai D, Warita T, Susumu T, Nakamura Y, Sako K, Tamagawa S, Matsushita E, Soma H, Sato M, Watanabe M. Alginate vs. Hyaluronic Acid as Carriers for Nucleus Pulposus Cells: A Study on Regenerative Outcomes in Disc Degeneration. Cells 2024; 13:1984. [PMID: 39682732 PMCID: PMC11639827 DOI: 10.3390/cells13231984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain, affecting millions globally. Regenerative medicine, particularly cell-based therapies, presents a promising therapeutic strategy. This study evaluates the comparative efficacy of two biomaterials-hyaluronic acid (HA) and alginate-as carriers for nucleus pulposus (NP) cell transplantation in a beagle model of induced disc degeneration. NP cells were isolated, cultured, and injected with either HA or alginate into degenerated discs, with saline and non-cell-loaded carriers used as controls. Disc height index, T2-weighted MRI, and histological analyses were conducted over a 12-week follow-up period to assess reparative outcomes. Imaging revealed that both carrier and cell-loaded treatments improved outcomes compared to degenerative controls, with cell-loaded carriers consistently outperforming carrier-only treated discs. Histological assessments supported these findings, showing trends toward extracellular matrix restoration in both treatment groups. While both biomaterials demonstrated reparative potential, HA showed greater consistency in supporting NP cells in promoting disc regeneration. These results underscore HA's potential as a superior carrier for NP cell-based therapies in addressing disc degeneration.
Collapse
Affiliation(s)
- Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Takayuki Warita
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Takano Susumu
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan;
| | | | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Hazuki Soma
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
12
|
Zhang S, Tong M, Li S, Zhang B, Zhang W, Wang R, Dong Z, Huang Y. The Role of Microvascular Variations in the Process of Intervertebral Disk Degeneration and Its Regulatory Mechanisms: A Literature Review. Orthop Surg 2024; 16:2587-2597. [PMID: 39205477 PMCID: PMC11541140 DOI: 10.1111/os.14209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Microvascular changes are considered key factors in the process of intervertebral disk degeneration (IDD). Microvascular invasion and growth into the nucleus pulposus (NP) and cartilaginous endplates are unfavorable factors that trigger IDD. In contrast, the rich distribution of microvessels in the bony endplates and outer layers of the annulus fibrosus is an important safeguard for the nutrient supply and metabolism of the intervertebral disk (IVD). In particular, the adequate supply of microvessels in the bony endplates is the main source of the nutritional supply for the entire IVD. Microvessels can affect the progression of IDD through a variety of pathways. Many studies have explored the effects of microvessel alterations in the NP, annulus fibrosus, cartilaginous endplates, and bony endplates on the local microenvironment through inflammation, apoptosis, and senescence. Studies also elucidated the important roles of microvessel alterations in the process of IDD, as well as conducted in-depth explorations of cytokines and biologics that can inhibit or promote the ingrowth of microvessels. Therefore, the present manuscript reviews the published literature on the effects of microvascular changes on IVD to summarize the roles of microvessels in IVD and elaborate on the mechanisms of action that promote or inhibit de novo microvessel formation in IVD.
Collapse
Affiliation(s)
- Si‐Ping Zhang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Min Tong
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Shi‐Da Li
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Bin Zhang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Wenhao Zhang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Rong Wang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Zhen‐Yu Dong
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Yi‐Fei Huang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| |
Collapse
|
13
|
Zhao R, Han F, Yu Q, Zhu Z, Tu Z, Xia T, Li B. A multifunctional scaffold that promotes the scaffold-tissue interface integration and rescues the ROS microenvironment for repair of annulus fibrosus defects. Bioact Mater 2024; 41:257-270. [PMID: 39149595 PMCID: PMC11325007 DOI: 10.1016/j.bioactmat.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 08/17/2024] Open
Abstract
Due to the limited self-repair ability of the annulus fibrosus (AF), current tissue engineering strategies tend to use structurally biomimetic scaffolds for AF defect repair. However, the poor integration between implanted scaffolds and tissue severely affects their therapeutic effects. To solve this issue, we prepared a multifunctional scaffold containing loaded lysyl oxidase (LOX) plasmid DNA exosomes and manganese dioxide nanoparticles (MnO2 NPs). LOX facilitates extracellular matrix (ECM) cross-linking, while MnO2 NPs inhibit excessive reactive oxygen species (ROS)-induced ECM degradation at the injury site, enhancing the crosslinking effect of LOX. Our results revealed that this multifunctional scaffold significantly facilitated the integration between the scaffold and AF tissue. Cells were able to migrate into the scaffold, indicating that the scaffold was not encapsulated as a foreign body by fibrous tissue. The functional scaffold was closely integrated with the tissue, effectively enhancing the mechanical properties, and preventing vascular invasion, which emphasized the importance of scaffold-tissue integration in AF repair.
Collapse
Affiliation(s)
- Runze Zhao
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215028, China
| | - Feng Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Qifan Yu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhuang Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhengdong Tu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Second Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, 215127, China
| | - Tingting Xia
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
14
|
Walk R, Broz K, Jing L, Potter R, Gonzalez CE, Beeve A, Scheller E, Gupta M, Setton L, Tang SY. The progression of neurovascular features and chemokine signatures of the intervertebral disc with degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603182. [PMID: 39071400 PMCID: PMC11275839 DOI: 10.1101/2024.07.12.603182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inflammatory cytokine production and de novo neurovascularization have been identified in painful, degenerated intervertebral discs (IVDs). However, the temporal trajectories of these key pathoanatomical features, including the cascade of inflammatory chemokines and neo- vessel and neurite infiltration, and their associations with IVD degeneration, remain relatively unknown. Investigating this process in the caudal mouse IVD enables the opportunity to study the tissue-specific response without confounding inflammatory signaling from neighboring structures. Thus this study aims to define the progression of chemokine production and neurovascular invasion during the IVD degeneration initiated by injury in the caudal spine 3-month-old C57BL6/J mice. Forty-nine IVD-secreted chemokines and matrix metalloproteinases (MMPs) was measured using multiplex ELISA, and the intradiscal infiltrating vessels (endomucin) and nerves (protein-gene-product 9.5) was quantified in the tissue volume using immunohistochemistry. Injury provoked the increase secretion of IL6, CCL2, CCL12, CCL17, CCL20, CCL21, CCL22, CXCL2 and MMP2 proteins. The centrality and structure of inflammatory networks in IVDs evolved over the 12 post-injury weeks, highlighting distinct responses between the acute and chronic phases. Neurites propagated rapidly within 2-weeks post-injury and remained relatively constant until 12-weeks. Vascular vessel length was observed to peak at 4-weeks post-injury and it regressed by 12-weeks. These findings identified the temporal flux of inflammatory chemokines and pain-associated pathoanatomy in a model of IVD degeneration using the mouse caudal spine.
Collapse
|
15
|
Breen A, Nematimoez M, Branney J, Breen A. Passive intervertebral restraint is different in patients with treatment-resistant chronic nonspecific low back pain: a retrospective cohort study and control comparison. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2405-2419. [PMID: 38730057 DOI: 10.1007/s00586-024-08249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE In vivo studies of continuous lumbar sagittal plane motion have found passive intervertebral motion to be more uneven in patients with chronic nonspecific low back pain (CNSLBP) than healthy controls, but the mechanisms are unclear. This study aimed to compare patients with CNSLBP with a matched group of pain-free controls for intervertebral restraint during passive recumbent bending. METHODS Seventeen patients with CNSLBP and minimal disc degeneration who had quantitative fluoroscopy investigations were matched to 17 healthy controls from a database acquired using the same imaging protocol. The entire database (n = 136) was examined for clustering of peaking times, magnitudes and ROM of the first derivatives of the intervertebral angle/motion curves (PTFD, PMFD and ROM) during flexion and return that might introduce confounding. The groups were then compared for differences in these variables. RESULTS There were significant segmental ROM differences among clusters in the database when PMFD and ROM were used as clustering variables, indicating heterogeneity. However, in the patient-control study, it was PTFD (velocity) that differentiated the groups. At L5-S1, this was at 10.82% of the motion path compared with 25.06% in the controls (p = 0.0002). For L4-5, PTFD was at 23.42% of the motion path in patients and 16.33% in controls (p = 0.0694) suggesting a reduced initial bending moment there. There were no significant differences for PMFD or ROM. CONCLUSION Peaking time of passive intervertebral velocity occurs early at L5-S1 in patients with CNSLBP; however, these findings should be treated with caution pending their replication. Future studies should explore relationships with altered disc pressures and biochemistry. Usefulness for monitoring regenerative disc therapies should be considered.
Collapse
Affiliation(s)
- Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK
| | - Mehdi Nematimoez
- Department of Sport Biomechanics, University of Bojnord, Bojnurd, Iran
| | - Jonathan Branney
- Faculty of Health and Social Science, Bournemouth University, Poole, BH12 5BB, UK.
| | - Alexander Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK
| |
Collapse
|
16
|
Heimann MK, Thompson K, Gunsch G, Tang SN, Klamer B, Corps K, Walter BA, Moore SA, Purmessur D. Characterization and modulation of the pro-inflammatory effects of immune cells in the canine intervertebral disk. JOR Spine 2024; 7:e1333. [PMID: 38660017 PMCID: PMC11039810 DOI: 10.1002/jsp2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Background Intervertebral disk (IVD) degeneration affects both humans and canines and is a major cause of low back pain (LBP). Mast cell (MC) and macrophage (MØ) infiltration has been identified in the pathogenesis of IVD degeneration (IVDD) in the human and rodent model but remains understudied in the canine. MC degranulation in the IVD leads to a pro-inflammatory cascade and activates protease activated receptor 2 (PAR2) on IVD cells. The objectives of the present study are to: (1) highlight the pathophysiological changes observed in the degenerate canine IVD, (2) further characterize the inflammatory effect of MCs co-cultured with canine nucleus pulposus (NP) cells, (3) evaluate the effect of construct stiffness on NP and MCs, and (4) identify potential therapeutics to mitigate pathologic changes in the IVD microenvironment. Methods Canine IVD tissue was isolated from healthy autopsy research dogs (beagle) and pet dogs undergoing laminectomy for IVD herniation. Morphology, protein content, and inflammatory markers were assessed. NP cells isolated from healthy autopsy (Mongrel hounds) tissue were co-cultured with canine MCs within agarose constructs and treated with cromolyn sodium (CS) and PAR2 antagonist (PAR2A). Gene expression, sulfated glycosaminoglycan content, and stiffness of constructs were assessed. Results CD 31+ blood vessels, mast cell tryptase, and macrophage CD 163+ were increased in the degenerate surgical canine tissue compared to healthy autopsy. Pro-inflammatory genes were upregulated when canine NP cells were co-cultured with MCs and the stiffer microenvironment enhanced these effects. Treatment with CS and PAR2 inhibitors mediated key pro-inflammatory markers in canine NP cells. Conclusion There is increased MC, MØs, and vascular ingrowth in the degenerate canine IVD tissue, similar to observations in the clinical population with IVDD and LBP. MCs co-cultured with canine NP cells drive inflammation, and CS and PAR2A are potential therapeutics that may mitigate the pathophysiology of IVDD in vitro.
Collapse
Affiliation(s)
- Mary K. Heimann
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Kelly Thompson
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Gilian Gunsch
- Center for Life Sciences Education, College of Arts and SciencesThe Ohio State UniversityOhioUSA
| | - Shirley N. Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Brett Klamer
- Center for Biostatistics, Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Kara Corps
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Benjamin A. Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Orthopedics, College of MedicineThe Ohio State UniversityOhioUSA
| | - Sarah A. Moore
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Orthopedics, College of MedicineThe Ohio State UniversityOhioUSA
| |
Collapse
|
17
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
18
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Lisiewski LE, Jacobsen HE, Viola DCM, Kenawy HM, Kiridly DN, Chahine NO. Intradiscal inflammatory stimulation induces spinal pain behavior and intervertebral disc degeneration in vivo. FASEB J 2024; 38:e23364. [PMID: 38091247 PMCID: PMC10795732 DOI: 10.1096/fj.202300227r] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Degeneration of the intervertebral disc (IVD) results in a range of symptomatic (i.e., painful) and asymptomatic experiences. Components of the degenerative environment, including structural disruption and inflammatory cytokine production, often correlate with pain severity. However, the role of inflammation in the activation of pain and degenerative changes has been complex to delineate. The most common IVD injury model is puncture; however, it initiates structural damage that is not representative of the natural degenerative cascade. In this study, we utilized in vivo injection of lipopolysaccharide (LPS), a pro-inflammatory stimulus, into rat caudal IVDs using 33G needles to induce inflammatory activation without the physical tissue disruption caused by puncture using larger needles. LPS injection increased gene expression of pro-inflammatory cytokines (Tnfa, Il1b) and macrophage markers (Inos, Arg1), supported by immunostaining of macrophages (CD68, CCR7, Arg1) and systemic changes in blood cytokine and chemokine levels. Disruption of the IVD structural integrity after LPS injection was also evident through changes in histological grading, disc height, and ECM biochemistry. Ultimately, intradiscal inflammatory stimulation led to local mechanical hyperalgesia, demonstrating that pain can be initiated by inflammatory stimulation of the IVD. Gene expression of nociceptive markers (Ngf, Bdnf, Cgrp) and immunostaining for neuron ingrowth (PGP9.5) and sensitization (CGRP) in the IVD were also shown, suggesting a mechanism for the pain exhibited. To our knowledge, this rat IVD injury model is the first to demonstrate local pain behavior resulting from inflammatory stimulation of caudal IVDs. Future studies will examine the mechanistic contributions of inflammation in mediating pain.
Collapse
Affiliation(s)
- Lauren E. Lisiewski
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Hayley E. Jacobsen
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Dan C. M. Viola
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Hagar M. Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Daniel N. Kiridly
- Department of Orthopedic Surgery, Northwell Health, Manhasset, NY, United States
| | - Nadeen O. Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
20
|
Iwasaki T, Akeda K, Kawaguchi K, Yamada J, Hasegawa T, Takegami N, Fujiwara T, Sudo A. Expression of Glial-Cell-Line-Derived Neurotrophic Factor Family Ligands in Human Intervertebral Discs. Int J Mol Sci 2023; 24:15874. [PMID: 37958856 PMCID: PMC10649213 DOI: 10.3390/ijms242115874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs) contribute to the sensitization of primary afferents and are involved in the pathogenesis of inflammatory pain. The purpose of this preliminary study was to examine the expression of other GFLs (neurturin (NRTN), artemin (ARTN), persephin (PSPN)) and receptors in human IVD cells and tissues exhibiting early and advanced stages of degeneration. Human IVD cells were cultured as a monolayer after isolation from the nucleus pulposus (NP) and anulus fibrosus (AF) tissues. The mRNA expression of NRTN, ARTN, PSPN, and their receptors (GFRA2-GFRA4) was quantified using real-time PCR. Protein expression was evaluated using immunohistochemistry and Western blotting. The expression of NRTN, ARTN, PSPN, and their co-receptors (GFRA2-GFRA4) was identified in human IVD cells at both mRNA and protein levels. A trend was noted wherein the mRNA expression of ARTN, PSPN, and GFRA2 was upregulated by IL-1β treatment in a dose-dependent manner. The percentages of immunopositive cells in the advanced degenerate stage of ARTN, PSPN, and GFRA2 were significantly higher than those in the early degenerate stage. Their expression was enhanced in advanced tissue degeneration, which suggests that GFLs (ARTN and PSPN) may be involved in the pathogenesis of discogenic pain.
Collapse
Affiliation(s)
| | - Koji Akeda
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City 514-8507, Mie, Japan; (T.I.); (K.K.); (J.Y.); (T.H.); (N.T.); (T.F.); (A.S.)
| | | | | | | | | | | | | |
Collapse
|
21
|
Peng Y, Chen X, Rao Z, Wu W, Zuo H, Chen K, Li K, Lin H, Liu S, Xiao Y, Wang B, Quan D, Qing X, Bai Y, Shao Z. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization. Acta Biomater 2023; 170:288-302. [PMID: 37598791 DOI: 10.1016/j.actbio.2023.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chronic low back pain mainly attributed to intervertebral disc (IVD) degeneration. Endogenous damage-associated molecular patterns (DAMPs) in the injured IVD, particularly mitochondria-derived nucleic acid molecules (CpG DNA), play a primary role in the inflammatory responses in macrophages. M1-type macrophages form a chronic inflammatory microenvironment by releasing pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia. We fabricated an amphiphilic polycarbonate that naturally forms cationic nanoparticles (cNP) in aqueous solutions, with the hydrophobic core loaded with TrkA-IN-1, an antagonist against the NGF receptor (TrkA). The drug delivery nanoparticles were denoted as TI-cNP. TrkA-IN-1 and TI-cNP were added to the decellularized annulus fibrosus matrix (DAF) hydrogel to form hybrid hydrogels, denoted as TI-DAF and TI-cNP-DAF, respectively. As a result, TrkA-IN-1 showed a delayed release profile both in TI-DAF and TI-cNP-DAF. Each mole of cNP could bind approximately 3 mol of CpG DNA to inhibit inflammation. cNP-DAF and TI-cNP-DAF significantly inhibited the M1 phenotype induced by CpG DNA. TI-DAF and TI-cNP-DAF reduced neurite branching and axon length, and inhibited the expression of neurogenic mediators (CGRP and substance P) in the presence of NGF. Besides, TI-cNP-DAF relieved mechanical hyperalgesia, reduced CGRP and substance P expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat disc herniation model. Summarily, TI-cNP-DAF, a novel composite IVD hydrogel, efficiently mediated the inflammatory environment, inhibited nerve ingrowth and sensitization, and could be clinically applied for treating discogenic pain. STATEMENT OF SIGNIFICANCE: Discogenic lower back pain, related to intervertebral disc degeneration (IDD), imposes a tremendous health and economic burden globally. M1-type macrophages release pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia and discogenic pain. Reconstructing matrix integrity and modulating the inflammatory microenvironment are promising strategies for preventing the ingrowth and activation of neurites. The TI-cNP-DAF hydrogel recovers tissue integrity, alleviates inflammation, and delivers the TrkA antagonist to inhibit the activity of NGF, thus restraining hyperinnervation and nociceptive input. Due to its simple production process, injectability, and acellular strategy, the hydrogel is operable and holds great potential for treating discogenic lower back pain.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilong Rao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiying Zuo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kaibin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daping Quan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
22
|
Lin P, Yan P, Zhu J, Huang S, Wang Z, Hu O, Jin H, Li Y, Zhang L, Zhao J, Chen L, Liu B, He J, Gan Y, Liu P. Spatially multicellular variability of intervertebral disc degeneration by comparative single-cell analysis. Cell Prolif 2023; 56:e13464. [PMID: 37025067 PMCID: PMC10542621 DOI: 10.1111/cpr.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Previous studies have revealed cellular heterogeneity in intervertebral discs (IVDs). However, the cellular and molecular alteration patterns of cell populations during degenerative progression remain to be fully elucidated. To illustrate the cellular and molecular alteration of cell populations in intervertebral disc degeneration (IDD), we perform single cell RNA sequencing on cells from four anatomic sites of healthy and degenerative goat IVDs. EGLN3+ StressCs, TGFBR3+ HomCs and GPRC5A+ RegCs exhibit the characteristics associated with resistance to stress, maintaining homeostasis and repairing, respectively. The frequencies and signatures of these cell clusters fluctuate with IDD. Notably, the chondrogenic differentiation programme of PROCR+ progenitor cells is altered by IDD, while notochord cells turn to stemness exhaustion. In addition, we characterise CAV1+ endothelial cells that communicate with chondrocytes through multiple signalling pathways in degenerative IVDs. Our comprehensive analysis identifies the variability of key cell clusters and critical regulatory networks responding to IDD, which will facilitate in-depth investigation of therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Peng Lin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Pulin Yan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Sha Huang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Huaijian Jin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Yangyang Li
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Liang Zhang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Jianhua Zhao
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical SciencesAcademy of Military SciencesBeijing100071China
- State Key Laboratory of Experimental Hematology, Institute of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of Hematology, School of Medicine, Jinan UniversityGuangzhou510632China
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjin300020China
| | - Jian He
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
- Laboratory of Basic MedicineThe General Hospital of Western Theater CommandChengdu610031China
| | - Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma, Burns and Combined Injury, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| |
Collapse
|
23
|
Peng Y, Chen X, Liu S, Wu W, Shu H, Tian S, Xiao Y, Li K, Wang B, Lin H, Qing X, Shao Z. Extracellular Vesicle-Conjugated Functional Matrix Hydrogels Prevent Senescence by Exosomal miR-3594-5p-Targeted HIPK2/p53 Pathway for Disc Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206888. [PMID: 37165721 DOI: 10.1002/smll.202206888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Indexed: 05/12/2023]
Abstract
Nucleus pulposus stem cells (NPSCs) senescence plays a critical role in the progression of intervertebral disc degeneration (IDD). Stem cell-derived extracellular vesicles (EV) alleviate cellular senescence. Whereas, the underlying mechanism remains unclear. Low stability largely limited the administration of EV in vivo. RGD, an arginine-glycine-aspartic acid tripeptide, strongly binds integrins expressed on the EV membranes, allowing RGD to anchor EV and prolong their bioavailability. An RGD-complexed nucleus pulposus matrix hydrogel (RGD-DNP) is developed to enhance the therapeutic effects of small EV (sEV). RGD-DNP prolonged sEV retention in vitro and ex vivo. sEV-RGD-DNP promoted NPSCs migration, decreased the number of SA-β-gal-positive cells, alleviated cell cycle arrest, and reduced p16, p21, and p53 activation. Small RNA-seq showed that miR-3594-5p is enriched in sEV, and targets the homeodomain-interacting protein kinase 2 (HIPK2)/p53 pathway. The HIPK2 knockdown rescues the impaired therapeutic effects of sEV with downregulated miR-3594-5p. RGD-DNP conjugate with lower amounts of sEV achieved similar disc regeneration with free sEV of higher concentrations in DNP. In conclusion, sEV-RGD-DNP increases sEV bioavailability and relieves NPSCs senescence by targeting the HIPK2/p53 pathway, thereby alleviating IDD. This work achieves better regenerative effects with fewer sEV and consolidates the theoretical basis for sEV application for IDD treatment.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Departments of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yan Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
24
|
Zhang S, Wang P, Hu B, Lv X, Liu W, Chen S, Shao Z. Inhibiting Heat Shock Protein 90 Attenuates Nucleus Pulposus Fibrosis and Pathologic Angiogenesis Induced by Macrophages via Down-Regulating Cell Migration-Inducing Protein. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:960-976. [PMID: 37088454 DOI: 10.1016/j.ajpath.2023.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is usually accompanied by nucleus pulposus (NP) fibrosis and pathologic angiogenesis, which are possibly associated with macrophage infiltration. Previous research indicates a destructive role of macrophages and the protective effect of inhibiting heat shock protein 90 (HSP90) in IVDD. Herein, the effects of inhibiting HSP90 on NP fibrosis and pathologic angiogenesis induced by macrophages were investigated further. Single-cell RNA-sequencing analysis was used to classify fibrotic NP cell (NPC) clusters and healthy NPC clusters in human NP tissues. The fibrotic NPC clusters were possibly associated with angiogenesis-related biological processes. Immunostaining showed the spatial association between blood vessel ingrowth and macrophage infiltration, as well as elevated levels of cell migration-inducing protein (CEMIP) and vascular endothelial growth factor A in severely degenerated human IVD tissues. Particularly, HSP90 inhibitor tanespimycin (17-AAG) ameliorated macrophage-induced fibrotic phenotype of NPCs via inhibiting CEMIP. M2, but not M1, macrophages promoted the pro-angiogenic ability of endothelial cells, which was attenuated by 17-AAG or HSP90 siRNA. Reversing the fibrotic phenotype of NPCs by Cemip siRNA also mitigated the pro-angiogenic effects of M2-conditioned medium-treated NPCs. Moreover, the murine IVDD model supported the 17-AAG-induced amelioration of NP fibrosis and endothelial cell invasion in IVD tissues. In conclusion, inhibiting HSP90 attenuated two interrelated pathologic processes, NP fibrosis and pathologic angiogenesis, induced by macrophages via down-regulating CEMIP.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Soufi KH, Castillo JA, Rogdriguez FY, DeMesa CJ, Ebinu JO. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108893. [PMID: 37240236 DOI: 10.3390/ijms24108893] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Back pain is the single leading cause of disability worldwide. Despite the prevalence and morbidity of lower back pain, we still lack a gold-standard treatment that restores the physiological function of degenerated intervertebral discs. Recently, stem cells have emerged as a promising strategy for regenerative therapy for degenerative disc disease. In this study, we review the etiology, pathogenesis, and developing treatment strategies for disc degeneration in low back pain with a focus on regenerative stem cell therapies. A systematic search of PubMed/MEDLINE/Embase/Clinical Trials.gov databases was conducted for all human subject abstracts or studies. There was a total of 10 abstracts and 11 clinical studies (1 RCT) that met the inclusion criteria. The molecular mechanism, approach, and progress of the different stem cell strategies in all studies are discussed, including allogenic bone marrow, allogenic discogenic cells, autologous bone marrow, adipose mesenchymal stem cells (MSCs), human umbilical cord MSC, adult juvenile chondrocytes, autologous disc derived chondrocytes, and withdrawn studies. Clinical success with animal model studies is promising; however, the clinical outcomes of stem cell regenerative therapy remain poorly understood. In this systematic review, we found no evidence to support its use in humans. Further studies on efficacy, safety, and optimal patient selection will establish whether this becomes a viable, non-invasive therapeutic option for back pain.
Collapse
Affiliation(s)
- Khadija H Soufi
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Jose A Castillo
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Freddie Y Rogdriguez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Charles J DeMesa
- Department of Anesthesia and Pain Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Julius O Ebinu
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
27
|
Coppock JA, Zimmer NE, Englander ZA, Danyluk ST, Kosinski AS, Spritzer CE, Goode AP, DeFrate LE. In vivo intervertebral disc mechanical deformation following a treadmill walking "stress test" is inversely related to T1rho relaxation time. Osteoarthritis Cartilage 2023; 31:126-133. [PMID: 36191831 PMCID: PMC10127291 DOI: 10.1016/j.joca.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess the in vivo relationship between the mechanical response of intervertebral discs (IVDs) to dynamic activity and IVD biochemical composition assessed via T1rho relaxation imaging. DESIGN Eighteen asymptomatic participants with no history of low back pain (LBP), injury, or surgery underwent magnetic resonance (MR) imaging of their lumbar spine prior to and immediately following a treadmill walking "stress test." Anatomic (SPACE, FLASH) MR images were obtained pre- and post-exercise and utilized to measure IVD mechanical deformation. Quantitative (T1rho) imaging was performed pre-exercise to reflect IVD composition. Pre-exercise anatomic images were also utilized to assess IVD degenerative status based on the modified Pfirrmann scale. To quantify mechanical response, 3D surface models of the L1-L2-L5-S1 IVDs were created from manual segmentations of pre- and post-exercise anatomic images and utilized to assess changes in IVD height. IVD strain (%) was defined as change in IVD height normalized to pre-activity height. Linear mixed models were used to assess the relationships between IVD mechanical deformation (strain), composition (T1rho relaxation time), and degenerative status (Pfirrmann grade). RESULTS Increased compressive IVD strain was associated with lower T1rho relaxation times in the nucleus pulposus (NP) of the disc (βT1rho=5.07,CI:[1.52,7.77],Rmarg2=0.52,p=0.005). Thus, an inverse relationship between IVD strain and NP T1rho relaxation time was observed. CONCLUSION The in vivo mechanical response of the IVD to the "stress test" was sensitive to differences in NP composition. The results of this study suggest that quantification of in vivo IVD mechanical function and composition may provide insight into IVD health.
Collapse
Affiliation(s)
- J A Coppock
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - N E Zimmer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Z A Englander
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - S T Danyluk
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - A S Kosinski
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - C E Spritzer
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - A P Goode
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA; Department of Population Health Sciences, Duke University, Durham, NC, USA
| | - L E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
Li F, Xie W, Chen Z, Zhou Z, Wang Z, Xiao J, Li Z. Neuropeptide Y and receptors are associated with the pyroptosis of nucleus pulposus in aging and degenerative intervertebral discs of rats. Neuropeptides 2022; 96:102284. [PMID: 36027700 DOI: 10.1016/j.npep.2022.102284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
The neuropeptide Y(NPY) mediates bone metabolism and the degradation of cartilage in the peripheral nervous system. However, its role in the intervertebral disc degeneration (IDD) is less clear and warrant further study. The process of IDD has always been accompanied by inflammatory response and pyroptosis of nucleus pulposus cells (NPCs). The aim of this study was to investigate the relationship between NPY, Y1R, Y2R and pyroptosis in aging and degenerative discs and the direct effect of NPY on NPCs. First, we have assessed NPY, Y1R, Y2R and the expression of pyroptosis related protein in the immature (6 weeks), mature (16 weeks), aged (54 weeks), and degenerated discs. As part of our studies, we also have evaluated pyroptotic changes in the NPCs, induced by exposure to NPY. Our results suggested that compared with natural aging discs, the degenerative discs showed the high expression of NPY, Y1R and Y2R. Correlation analysis showed that the level of NPY and Y1R in degenerative discs were positively correlated with GSDMD, whereas there was no significant correlation between Y2R and GSDMD. In vitro, NPY treatment stimulated the activation of caspase-1-dependent pyroptosis of NPCs. However, Y1R antagonist inhibited NPY-induced pyroptosis of NPCs. Western blot confirmed that Y1R antagonist decreased the level of cleaved.GSDMD and caspase-1 in NPCs. In conclusion, our results indicated that compared with natural aging discs, the degenerated discs showed the high expression of NPY, Y1R and Y2R. NPY-Y1R involve the IDD development by the regulation of pyroptosis in the NPCs. Regulating the function of NPY may be a promising strategy for IDD treatment.
Collapse
Affiliation(s)
- Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Weixin Xie
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhijie Chen
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhi Zhou
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhenwei Wang
- Department of clinical laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
29
|
Degenerative Disc Disease of the Spine: From Anatomy to Pathophysiology and Radiological Appearance, with Morphological and Functional Considerations. J Pers Med 2022; 12:jpm12111810. [PMID: 36579533 PMCID: PMC9698646 DOI: 10.3390/jpm12111810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Degenerative disc disease is a common manifestation in routine imaging of the spine; this finding is partly attributable to physiological aging and partly to a pathological condition, and sometimes this distinction is simply not clear. In this review, we start focusing on disc anatomy and pathophysiology and try to correlate them with radiological aspects. Furthermore, there is a special focus on degenerative disc disease terminology, and, finally, some considerations regarding disc morphology and its specific function, as well as the way in which these aspects change in degenerative disease. Radiologists, clinicians and spine surgeons should be familiar with these aspects since they have an impact on everyday clinical practice.
Collapse
|
30
|
Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, Sun J, Shi J. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev 2022; 81:101733. [PMID: 36113765 DOI: 10.1016/j.arr.2022.101733] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of PLA, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
31
|
Ge Y, Chen Y, Guo C, Luo H, Fu F, Ji W, Wu C, Ruan H. Pyroptosis and Intervertebral Disc Degeneration: Mechanistic Insights and Therapeutic Implications. J Inflamm Res 2022; 15:5857-5871. [PMID: 36263145 PMCID: PMC9575467 DOI: 10.2147/jir.s382069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Low back pain (LBP) is a common problem worldwide, resulting in great patient suffering and great challenges for the social health system. Intervertebral disc (IVD) degeneration (IVDD) is widely acknowledged as one of the key causes of LBP. Accumulating evidence suggests that aberrant pyroptosis of IVD cells is involved in the pathogenesis of IVDD progression, however, the comprehensive roles of pyroptosis in IVDD have not been fully established, leaving attempts to treat IVDD with anti-pyroptosis approaches questionable. In this review, we summarize the characteristics of pyroptosis and emphasize the effects of IVD cell pyroptosis on the pathological progression of IVDD, including secretion of cytokines, nucleus pulposus cell apoptosis and autophagy, accelerated extracellular matrix degradation, annulus fibrosus rupture, cartilage endplate calcification, vascularization, sensory and sympathetic fiber neoinnervation, and infiltrating lymphatic vessels. Finally, we discuss several interventions used to treat IVDD by targeting pyroptosis. This review provides novel insights into the crucial role of IVD cell pyroptosis in IVDD pathogenesis, and could be informative for developing novel therapeutic approaches for IVDD and LBP.
Collapse
Affiliation(s)
- Yuying Ge
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chijiao Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fangda Fu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China
| | - Weifeng Ji
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China
| | - Chengliang Wu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China,Correspondence: Chengliang Wu, Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, People’s Republic of China, Email
| | - Hongfeng Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China,Hongfeng Ruan, Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, People’s Republic of China, Email
| |
Collapse
|
32
|
Lillyman DJ, Lee FS, Barnett EC, Miller TJ, Alvaro ML, Drvol HC, Wachs RA. Axial hypersensitivity is associated with aberrant nerve sprouting in a novel model of disc degeneration in female Sprague Dawley rats. JOR Spine 2022; 5:e1212. [PMID: 36203864 PMCID: PMC9520768 DOI: 10.1002/jsp2.1212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic low back pain is a global socioeconomic crisis and treatments are lacking in part due to inadequate models. Etiological research suggests that the predominant pathology associated with chronic low back pain is intervertebral disc degeneration. Various research teams have created rat models of disc degeneration, but the clinical translatability of these models has been limited by an absence of robust chronic pain-like behavior. To address this deficit, disc degeneration was induced via an artificial annular tear in female Sprague Dawley rats. The subsequent degeneration, which was allowed to progress for 18-weeks, caused a drastic reduction in disc volume. Furthermore, from week 10 till study conclusion, injured animals exhibited significant axial hypersensitivity. At study end, intervertebral discs were assessed for important characteristics of human degenerated discs: extracellular matrix breakdown, hypocellularity, inflammation, and nerve sprouting. All these aspects were significantly increased in injured animals compared to sham controls. Also of note, 20 significant correlations were detected between selected outcomes including a moderate and highly significant correlation (R = 0.59, p < 0.0004) between axial hypersensitivity and disc nerve sprouting. These data support this model as a rigorous platform to explore the pathobiology of disc-associated low back pain and to screen treatments.
Collapse
Affiliation(s)
- David J. Lillyman
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Fei San Lee
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Evie C. Barnett
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Tyler J. Miller
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Moreno Lozano Alvaro
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Henry C. Drvol
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Rebecca A. Wachs
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
33
|
Significance of Immune-Related Genes in the Diagnosis and Classification of Intervertebral Disc Degeneration. J Immunol Res 2022; 2022:2616260. [PMID: 36081453 PMCID: PMC9448583 DOI: 10.1155/2022/2616260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background With the extensive development of intervertebral disc degeneration (IDD) research, IDD has been found to be a complex disease associated with immune-related gene (IRGs) changes. Nonetheless, the roles of IRGs in IDD are unclear. Methods In our study, 11 IRGs were chosen using differential analysis between nondisc degeneration and degenerative patients from the GEO database. Then, we utilized a random forest (RF) model to screen six candidate IRGs to predict the risk of IDD. A nomogram was developed on the basis of six candidate IRGs, and DCA showed that patients could benefit from the nomogram. Based on the selected significant IRGs, a consensus clustering approach was used to differentiate disc degeneration patients into two immune patterns (immune cluster A and B). The PCA algorithm was constructed to compute immune scores for every sample, to quantify immune patterns. The immune scores of immune cluster B patients were higher than those of immune cluster A. Results Through differential expression analysis between healthy and IDD samples, 11 significant IRGs (CTSS, S100Z, STAT3, KLRK1, FPR1, C5AR2, RLN1, IFGR2, IL2RB, IL17RA, and IL6R) were recognized through significant IRGs. The “Reverse Cumulative Distribution of Residual” and “Boxplots of Residual” indicate that the RF model has minimal residuals. The majority of samples in the model have relatively small residuals, demonstrating that the model is better. Besides, the nomogram model was constructed based on importance and the IRGs with importance scores greater than 2 (FPR1, RLN1, S100Z, IFNGR2, KLRK1, and CTSS). The nomogram model revealed that decision-making based on an established model might be beneficial for IDD patients, and the predictive power of the nomogram model was significant. In addition, we identified two different immune cluster patterns (immune cluster A and immune cluster B) based on the 11 IRGs. We found that immune cluster A had significantly higher levels of MDSC, neutrophil, plasmacytoid dendritic cell, and type 17 T helper cell expression than immune cluster B. And we calculated the score for each sample to quantify the gene patterns. The patients in immune cluster B or gene cluster B had higher immune scores than those in immune cluster A or gene cluster A. Conclusion In conclusion, IRGs play an extremely significant role in the occurrence of IDD. Our study of immune patterns may guide the strategies of prevention and treatment for IDD in the future.
Collapse
|
34
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Conger A, Smuck M, Truumees E, Lotz JC, DePalma MJ, McCormick ZL. Vertebrogenic Pain: A Paradigm Shift in Diagnosis and Treatment of Axial Low Back Pain. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:S63-S71. [PMID: 35856329 PMCID: PMC9297155 DOI: 10.1093/pm/pnac081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Aaron Conger
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Matthew Smuck
- Department of Orthopaedics, Stanford University, Redwood City, CA, USA
| | - Eeric Truumees
- The University of Texas Dell Medical School, Ascension Texas Spine and Scoliosis, Austin, TX, USA
| | - Jeffrey C Lotz
- Department of Orthopaedics, University of California San Francisco, San Francisco, CA, USA
| | | | - Zachary L McCormick
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Lopez SG, Bonassar LJ. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis, extracellular matrix assembly, and mechanical function of fibrocartilage. Connect Tissue Res 2022; 63:269-286. [PMID: 33726572 DOI: 10.1080/03008207.2021.1903887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Proteoglycans, especially small leucine rich proteoglycans (SLRPs), play major roles in facilitating the development and regulation of collagen fibers and other extracellular matrix components. However, their roles in fibrocartilage have not been widely reviewed. Here, we discuss both SLRP and large aggregating proteoglycan's roles in collagen fibrillogenesis and extracellular matrix assembly in fibrocartilage tissues such as the meniscus, annulus fibrosus (AF), and TMJ disc. We also discuss their expression levels throughout development, aging and degeneration, as well as repair. METHODS A review of literature discussing proteoglycans and collagen fibrillogenesis in fibrocartilage was conducted and data from these manuscripts were analyzed and grouped to discuss trends throughout the tissue's architectural zones and developmental stage. RESULTS The spatial collagen architecture of these fibrocartilaginous tissues is reflected in the distribution of proteoglycans expressed, suggesting that each proteoglycan plays an important role in the type of architecture presented and associated mechanical function. CONCLUSION The unique structure-function relationship of fibrocartilage makes the varied architectures throughout the tissues imperative for their success and understanding the functions of these proteoglycans in developing and maintaining the fiber structure could inform future work in fibrocartilage replacement using tissue engineered constructs.
Collapse
Affiliation(s)
- Serafina G Lopez
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Ye F, Lyu F, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine 2022; 5:e1196. [PMID: 35386754 PMCID: PMC8966871 DOI: 10.1002/jsp2.1196] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration contributes significantly to low back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc herniation may cause LBP and radicular pain, but not all LBP patients have disc herniation. Degenerated discs could be the source of pain, but not all degenerated discs are symptomatic. We previously found that disc degeneration and herniation accompanied by inflammation. We further found that anti-inflammatory molecules blocked immune responses, alleviated IVD degeneration and pain. Based on our recent findings and the work of others, we hypothesize that immune system may play a prominent role in the production of disc herniation or disc degeneration associated pain. While the nucleus pulposus (NP) is an immune-privileged organ, the damage of the physical barrier between NP and systemic circulation, or the innervation and vascularization of the degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and on the other hand presents compression on the nerve root or dorsal root ganglion (DRG), which both elicit immune responses induced by immune cells and their mediators. The inflammation can remain for a long time at remote distance, with various types of cytokines and immune cells involved in this pain-inducing process. In this review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after break of physical barrier, the inflammatory activities in the DRG and the generation of pain. We also summarize the involvement of immune system, including immune cells and cytokines, in degenerated or herniated IVDs and affected DRG.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Orthopaedics, Fujian Provincial HospitalProvincial Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Feng‐Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Pain Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
39
|
Sakai D, Schol J, Watanabe M. Clinical Development of Regenerative Medicine Targeted for Intervertebral Disc Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:267. [PMID: 35208590 PMCID: PMC8878570 DOI: 10.3390/medicina58020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Low back pain is critical health, social, and economic issue in modern societies. This disease is often associated with intervertebral disc degeneration; however, contemporary treatments are unable to target this underlying pathology to alleviate the pain symptoms. Cell therapy offers a promising novel therapeutic that, in theory, should be able to reduce low back pain through mitigating the degenerative disc environment. With the clinical development of cell therapeutics ongoing, this review aims to summarize reporting on the different clinical trials and assess the different regenerative strategies being undertaken to collectively obtain an impression on the potential safety and effectiveness of cell therapeutics against intervertebral disc-related diseases.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara 259-1193, Japan; (J.S.); (M.W.)
| | | | | |
Collapse
|
40
|
Xin L, Xu W, Wang J, Yu F, Fan S, Xu X, Yang Y. Proteoglycan-depleted regions of annular injury promote nerve ingrowth in a rabbit disc degeneration model. Open Med (Wars) 2021; 16:1616-1627. [PMID: 34761113 PMCID: PMC8565593 DOI: 10.1515/med-2021-0363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background To assess the effects of proteoglycan-depleted regions of annular disruptions on nerve ingrowth in the injury site in vivo. Methods New Zealand white rabbits (n = 18) received annular injuries at L3/4, L4/5, and L5/6. The experimental discs were randomly assigned to four groups: (a) an annular defect was created; (b) an annular defect implanted with a poly lactic-co-glycolic acid (PLGA)/fibrin/PBS plug; (c) an annular defect implanted with a PLGA/fibrin/chondroitinase ABC (chABC) plug; and (d) an uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, and analysis of the proteoglycan (PG) content. Immunohistochemical detection of nerve fibers and chondroitin sulfate (CS) was performed. Results The injured discs produced progressive and reliable disc degeneration. In the defective discs, the lamellated appearance of AF (Annulus fibrosus) was replaced by extensive fibrocartilaginous-like tissue formation outside the injured sites. In contrast, newly formed tissue was distributed along small fissures, and small blood vessels appeared in the outer part of the disrupted area in the PLGA/fibrin/PBS discs. More sprouting nerve fibers grew further into the depleted annulus regions in the PLGA/fibrin/chABC discs than in the control discs and those receiving PLGA/fibrin/PBS. In addition, the innervation scores of the PLGA/fibrin/chABC discs were significantly increased compared with those of the PLGA/fibrin/PBS discs and defected discs. Conclusion ChABC-based PLGA/fibrin gel showed promising results by achieving biointegration with native annulus tissue and providing a local source for the sustained release of active chABC. Disc-derived PG-mediated inhibition of nerve and blood vessel ingrowth was abrogated by chABC enzymatic deglycosylation in an annular-injured rabbit disc degeneration model.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Weixin Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Jian Wang
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Fang Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Shunwu Fan
- Department of Spine Surgery, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310020, Zhejiang Province, China
| | - Xinwei Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Yang Yang
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
41
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Latif R, Imran S, Ahmad I, Ilyas MS, Aziz A, Zehra U. Vertebral Endplate Changes Correlate with Presence of Cartilaginous Endplate in the Herniated Disc Tissue: Factor Predicting Failure of Conservative Treatment. Asian Spine J 2021; 16:212-220. [PMID: 34461689 PMCID: PMC9066261 DOI: 10.31616/asj.2021.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/02/2021] [Indexed: 12/28/2022] Open
Abstract
Study Design Cross-sectional comparative. Purpose To characterize the scores of disc degeneration, inflammation, and nerve density in herniated disc samples and associate findings with the presence of vertebral endplate (VEP) changes on magnetic resonance imaging (MRI). Overview of Literature Considering the role of disc composition in spontaneous regression and persistence of pain during conservative management, it is important to identify the influencing factors. VEP changes are highly associated with disc degeneration, but their correlation with herniated disc composition has not yet been reported. Methods Fifty-one discs were obtained from patients undergoing surgery for herniated disc. Their ages ranged from 19–65 years, and 31/51 were male. Pre-surgical T1 and T2 weighted lumbar-spine MRIs were analyzed to observe Pfirrmann grade, VEP defects, herniation type, Modic changes, and high-intensity zones (HIZ) at the affected level. Five-micron thick sections were stained with hematoxylin and eosin, Alcian blue periodic acid–Schiff stain; examined for histological degeneration scores (HDS; 0–15), inflammation (0 [absence]–3 [severe]), and presence of cartilaginous endplate (CEP). Three-micron thick sections were stained with protein-gene-product 9.5 and expression was counted/mm2. Data was analyzed, and p<0.05 was considered to indicate statistical significance. Results VEP defects, Modic changes, and HIZ were respectively observed in 30/51, 16/51, and 6/51 of the samples. CEP was observed in 26/51 samples and in 23/51 with endplate defects. Discs with adjacent VEP defects showed increased HDS (p<0.001) and inflammation (p<0.001). Discs with adjacent Modic changes also revealed increased HDS (p=0.01). Histological sections with CEP showed increased HDS (p<0.001) and inflammation (p<0.001), and nerve density was significantly positively correlated with HDS (r=0.27, p=0.02). Conclusions VEP changes can modulate degeneration and inflammation of herniated discs. Presence of these changes is highly predictive of the occurrence of CEP in herniated discs, which leads to slow resorption and persistent clinical symptoms.
Collapse
Affiliation(s)
- Rabia Latif
- Department of Anatomy, University of Health Sciences Lahore, Lahore, Pakistan
| | - Sumera Imran
- Department of Anatomy, University of Health Sciences Lahore, Lahore, Pakistan
| | - Ijaz Ahmad
- Department of Orthopedics & Spine Surgery, Ghurki Trust Teaching Hospital, Lahore, Pakistan
| | - Muhammad Saad Ilyas
- Department of Orthopedics & Spine Surgery, Ghurki Trust Teaching Hospital, Lahore, Pakistan
| | - Amer Aziz
- Department of Orthopedics & Spine Surgery, Ghurki Trust Teaching Hospital, Lahore, Pakistan
| | - Uruj Zehra
- Department of Anatomy, University of Health Sciences Lahore, Lahore, Pakistan
| |
Collapse
|
43
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Deneuville JP, Yushchenko M, Vendeuvre T, Germaneau A, Billot M, Roulaud M, Sarracanie M, Salameh N, Rigoard P. Quantitative MRI to Characterize the Nucleus Pulposus Morphological and Biomechanical Variation According to Sagittal Bending Load and Radial Fissure, an ex vivo Ovine Specimen Proof-of-Concept Study. Front Bioeng Biotechnol 2021; 9:676003. [PMID: 34178965 PMCID: PMC8220087 DOI: 10.3389/fbioe.2021.676003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background and context: Low back pain is a dramatic burden worldwide. Discography studies have shown that 39% of chronic low back pain patients suffer from discogenic pain due to a radial fissure of intervertebral disc. This can have major implications in clinical therapeutic choices. The use of discography is restricted because of its invasiveness and interest in it remains low as it represents a static condition of the disc morphology. Magnetic Resonance Imaging (MRI) appears to be less invasive but does not describe the biomechanical dynamic behavior of the fissure. Purpose: We aimed to seek a quantitative MRI protocol combined with ex vivo sagittal loading to analyze the morphological and biomechanical changes of the intervertebral disc structure and stress distribution. Study design: Proof of concept. Methods: We designed a proof-of-concept ovine study including 3 different 3.0 T-MRI sequences (T2-weighted, T1 and T2 mapping). We analyzed 3 different mechanical states (neutral, flexion and extension) on a fresh ovine spine specimen to characterize an intervertebral disc before and after puncturing the anterior part of the annulus fibrosus. We used a mark tracking method to calculate the bending angles and the axial displacements of the discal structures. In parallel, we created a finite element model to calculate the variation of the axial stress and the maximal intensity shear stress, extrapolated from our experimental boundary conditions. Results: Thanks to an original combination of specific nuclear relaxation time quantifications (T1, T2) of the discal tissue, we characterized the nucleus movement/deformation into the fissure according to the synchronous mechanical load. This revealed a link between disc abnormality and spine segment range of motion capability. Our finite element model highlighted significant variations within the stress distribution between intact and damaged disc. Conclusion: Quantitative MRI appears to provide a new opportunity to characterize intra-discal structural morphology, lesions and stress changes under the influence of mechanical load. This preliminary work could have substantial implications for non-invasive disc exploration and could help to validate novel therapies for disc treatment.
Collapse
Affiliation(s)
- Jean-Philippe Deneuville
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France.,Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Poitiers, France
| | - Maksym Yushchenko
- Department of Biomedical Engineering, Center for Adaptable MRI Technology (AMT Center), University of Basel, Allschwil, Switzerland
| | - Tanguy Vendeuvre
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France.,Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Poitiers, France.,Department of Spine, Neuromodulation and Rehabilitation, Poitiers University Hospital, Poitiers, France
| | - Arnaud Germaneau
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Poitiers, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mathieu Sarracanie
- Department of Biomedical Engineering, Center for Adaptable MRI Technology (AMT Center), University of Basel, Allschwil, Switzerland
| | - Najat Salameh
- Department of Biomedical Engineering, Center for Adaptable MRI Technology (AMT Center), University of Basel, Allschwil, Switzerland
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France.,Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Poitiers, France.,Department of Spine, Neuromodulation and Rehabilitation, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
45
|
Groh AMR, Fournier DE, Battié MC, Séguin CA. Innervation of the Human Intervertebral Disc: A Scoping Review. PAIN MEDICINE (MALDEN, MASS.) 2021; 22:1281-1304. [PMID: 33595648 PMCID: PMC8185559 DOI: 10.1093/pm/pnab070] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Back pain is an elusive symptom complicated by a variety of possible causes, precipitating and maintaining factors, and consequences. Notably, the underlying pathology remains unknown in a significant number of cases. Changes to the intervertebral disc (IVD) have been associated with back pain, leading many to postulate that the IVD may be a direct source of pain, typically referred to as discogenic back pain. Yet despite decades of research into the neuroanatomy of the IVD, there is a lack of consensus in the literature as to the distribution and function of neural elements within the tissue. The current scoping review provides a comprehensive systematic overview of studies that document the topography, morphology, and immunoreactivity of neural elements within the IVD in humans. METHOD Articles were retrieved from six separate databases in a three-step systematic search and were independently evaluated by two reviewers. RESULTS Three categories of neural elements were described within the IVD: perivascular nerves, sensory nerves independent of blood vessels, and mechanoreceptors. Nerves were consistently localized within the outer layers of the annulus fibrosus. Neural ingrowth into the inner annulus fibrosus and nucleus pulposus was found to occur only in degenerative and disease states. CONCLUSION While the pattern of innervation within the IVD is clear, the specific topographic arrangement and function of neural elements in the context of back pain remains unclear.
Collapse
Affiliation(s)
- Adam M R Groh
- Integrated Program in Neuroscience, The Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Dale E Fournier
- Health and Rehabilitation Sciences (Physical Therapy), Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Michele C Battié
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
46
|
Le Maitre CL, Dahia CL, Giers M, Illien‐Junger S, Cicione C, Samartzis D, Vadala G, Fields A, Lotz J. Development of a standardized histopathology scoring system for human intervertebral disc degeneration: an Orthopaedic Research Society Spine Section Initiative. JOR Spine 2021; 4:e1167. [PMID: 34337340 PMCID: PMC8313169 DOI: 10.1002/jsp2.1167] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Histopathological analysis of intervertebral disc (IVD) tissues is a critical domain of back pain research. Identification, description, and classification of attributes that distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit comparisons of results across studies and prevent organizing information into a clear representation of the hierarchical, spatial, and temporal patterns of IVD degeneration. Thus, the following Orthopaedic Research Society (ORS) Spine Section Initiative aimed to develop a standardized histopathology scoring scheme for human IVD degeneration. METHODS Guided by a working group of experts, this prospective process entailed a series of stages that consisted of reviewing and assessing past grading schemes, surveying IVD researchers globally on current practice and recommendations for a new grading system, utilizing expert opinion a taxonomy of histological grading was developed, and validation performed. RESULTS A standardized taxonomy was developed, which showed excellent intra-rater reliability for scoring nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous end plate (CEP) regions (interclass correlation [ICC] > .89). The ability to reliably detect subtle changes varied by IVD region, being poorest in the NP (ICC: .89-.95) where changes at the cellular level were important, vs the AF (ICC: .93-.98), CEP (ICC: .97-.98), and boney end plate (ICC: .96-.99) where matrix and structural changes varied more dramatically with degeneration. CONCLUSIONS The proposed grading system incorporates more comprehensive descriptions of degenerative features for all the IVD sub-tissues than prior criteria. While there was excellent reliability, our results reinforce the need for improved training, particularly for novice raters. Future evaluation of the proposed system in real-world settings (eg, at the microscope) will be needed to further refine criteria and more fully evaluate utility. This improved taxonomy could aid in the understanding of IVD degeneration phenotypes and their association with back pain.
Collapse
Affiliation(s)
| | - Chitra L. Dahia
- Orthopaedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental BiologyWeill Cornell Medicine, Graduate School of Medical SciencesNew YorkNew YorkUSA
| | - Morgan Giers
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | | | - Claudia Cicione
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Dino Samartzis
- Department of Orthopaedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- International Spine Research and Innovation InitiativeRush University Medical CenterChicagoIllinoisUSA
| | - Gianluca Vadala
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Aaron Fields
- Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Jeffrey Lotz
- Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
47
|
Binch ALA, Fitzgerald JC, Growney EA, Barry F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol 2021; 17:158-175. [PMID: 33526926 DOI: 10.1038/s41584-020-00568-w] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain, a prevalent and chronic condition that has a striking effect on quality of life. Currently, no approved pharmacological interventions or therapies are available that prevent the progressive destruction of the IVD; however, regenerative strategies are emerging that aim to modify the disease. Progress has been made in defining promising new treatments for disc disease, but considerable challenges remain along the entire translational spectrum, from understanding disease mechanism to useful interpretation of clinical trials, which make it difficult to achieve a unified understanding. These challenges include: an incomplete appreciation of the mechanisms of disc degeneration; a lack of standardized approaches in preclinical testing; in the context of cell therapy, a distinct lack of cohesion regarding the cell types being tested, the tissue source, expansion conditions and dose; the absence of guidelines regarding disease classification and patient stratification for clinical trial inclusion; and an incomplete understanding of the mechanisms underpinning therapeutic responses to cell delivery. This Review discusses current approaches to disc regeneration, with a particular focus on cell-based therapeutic strategies, including ongoing challenges, and attempts to provide a framework to interpret current data and guide future investigational studies.
Collapse
Affiliation(s)
- Abbie L A Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Emily A Growney
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
48
|
Huang B, Liu J, Wei X, Li S, Xiang Y, Wu H, Chen J, Zhao F. Damage to the human lumbar cartilage endplate and its clinical implications. J Anat 2021; 238:338-348. [PMID: 33011984 PMCID: PMC7812127 DOI: 10.1111/joa.13321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage, and plays an important role in the diffusion of nutrients into the intervertebral discs. Its damage may seriously affect the disc degeneration, and result in low back pain (LBP). However, the structural features of damaged CEPs have not been well characterized, and this hinders our understanding of the etiology of disc degeneration and pain. To present the structural features of micro-damaged CEPs in patients with disc degeneration and LBP that might even be regarded as an initial factor for disc degeneration, we performed a histological study of micro-damaged CEPs harvested from human lumbar intervertebral discs and analyzed its clinical implications. Human lumbar CEPs were excised from 35 patients (mean age 60.91 years) who had disc degeneration and LBP. Control tissue was obtained from 15 patients (mean age 54.67 years) with lumbar vertebral burst fractures. LBP and disability were assessed clinically, and all patients underwent anterior vertebral body fusion surgery. CEPs together with some adjacent nucleus pulposus (NP) were sectioned at 4 µm, and stained using H&E, Safranin O/Fast Green, and Alcian Blue. Immunostaining and PCR were used to identify various markers of degeneration, innervation, and inflammation. Histology demonstrated physical micro-damage in 14/35 CEPs from the disc degeneration group. Six major types of damage could be distinguished: fissure, traumatic nodes, vascular mimicry, incorporation of NP tissue within the CEP, incorporation of bone within the CEP, and incorporation of NP and bone within the CEP. Pain and disability scores (ODI: p = 0.0190; JOA: p = 0.0205; JOABPEQ: p = 0.0034) were significantly higher in those with micro-damaged CEPs (N = 14) than in those with non-damaged CEPs (N = 21). CEP damage was significantly associated with elevated MMP3 (p = 0.043), MMP13 (p = 0.0191), ADAMTS5 (p = 0.0253), TNF-α (p = 0.0011), and Substance P (p = 0.0028), and with reduced Sox9 (p = 0.0212), aggrecan (p = 0.0127), and type II collagen (p = 0.0139). In conclusion, we presented a new classification of human lumbar micro-damaged CEPs. Furthermore, we verify disc degeneration, innervation, and discogenic pain in micro-damaged CEPs.
Collapse
Affiliation(s)
- Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Shengwen Li
- Department of Orthopedic SurgeryHaining People's HospitalHainingChina
| | - Yufeng Xiang
- Department of Orthopedic SurgeryLinhai Second People's HospitalTaizhouChina
| | - Hao Wu
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong, SARChina
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
49
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Tang S, Salazar-Puerta A, Richards J, Khan S, Hoyland JA, Gallego-Perez D, Walter B, Higuita-Castro N, Purmessur D. Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study. Eur Cell Mater 2021; 41:90-107. [PMID: 33465243 PMCID: PMC8514169 DOI: 10.22203/ecm.v041a07] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by decreased cellularity and proteoglycan synthesis and increased inflammation, catabolism, and neural/vascular ingrowth. Regenerative methods for IVD degeneration are largely cell-therapy-based or involve viral vectors, which are associated with mutagenesis and undesired immune responses. The present study used bulk electroporation and engineered extracellular vesicles (EVs) to deliver forkhead-box F1 (FOXF1) mRNA to degenerate human nucleus pulposus (NP) cells as a minimally invasive therapeutic strategy for IVD regeneration. Bulk electroporation was used to investigate FOXF1 effects on human NP cells during a 4-week culture in 3D agarose constructs. Engineered EV delivery of FOXF1 into human IVD cells in monolayer was determined, with subsequent in vivo validation in a pilot mouse IVD puncture model. FOXF1 transfection significantly altered gene expression by upregulating healthy NP markers [FOXF1, keratin 19 (KRT19)], decreasing inflammatory cytokines [interleukin (IL)-1β, -6], catabolic enzymes [metalloproteinase 13 (MMP13)] and nerve growth factor (NGF), with significant increases in glycosaminoglycan accumulation in human NP cells. Engineered EVs loaded with FOXF1 demonstrated successful encapsulation of FOXF1 cargo and effective uptake by human NP cells cultured in monolayer. Injection of FOXF1-loaded EVs into the mouse IVD in vivo resulted in a significant upregulation of FOXF1 and Brachyury, compared to controls at 7 d post-injection, with no evidence of cytotoxicity. This is the first study to demonstrate non-viral delivery of FOXF1 and reprogramming of human NP cells in vitro and mouse IVD cells in vivo. This strategy represents a non-addictive approach for treating IVD degeneration and associated back pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - D Purmessur
- 3155 Biomedical and Materials Engineering Complex, 140 W. 19th Ave, Columbus, OH 43210,
| |
Collapse
|