1
|
Louzada NSV, Tavares WC. Beyond head and wings: Unveiling influence of diet, body size, and phylogeny on the evolution of the femur in phyllostomid bats. Anat Rec (Hoboken) 2025; 308:930-945. [PMID: 39095996 DOI: 10.1002/ar.25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Phyllostomidae, the most diverse family of Neotropical bats, encompass 230 species with varied dietary habits and food acquisition methods. Their feeding niche diversification has shaped skull and wing morphologies through natural selection, reflecting food processing and flight strategies. Yet, evolution of bat hindlimbs, especially in phyllostomids, remains little understood. Previous studies highlighted the femur's morphology as a key to understanding the evolution of quadrupedalism in yangochiropteran bats, including the adept walking observed in vampire bats (Desmodontinae). Here, we aimed to describe the femoral morphological variation in Phyllostomidae, correlating this with body size and assessing the effects of phylogenetic history, dietary habits, and hindlimb usage. Analyzing 15 femoral traits from 45 species across 9 subfamilies through phylogenetically informed methods, we discovered a significant phylogenetic structure in femoral morphology. Allometric analysis indicated that body mass accounts for about 85% of the variance in phyllostomid femoral size and about 11% in femoral shape. Relatively smaller femurs showed to be typical in Stenodermatinae, Lonchophyllinae, and Glossophaginae, in contrast to the larger femurs of Phyllostominae, Desmodontinae, Micronycterinae, and Lonchorrhininae. Furthermore, extensive femur shape variation was detected, with the most distinct morphologies in vampire bats, followed by frugivorous species. Adaptive evolutionary models related to diet more effectively explained variations in femoral relative size and shape than stochastic models. Contrary to the conventional belief of limited functional demand on bat femurs, our findings suggest that femoral morphology is significantly influenced by functional demands associated with diet and food capture, in addition to being partially structured by body size and shared evolutionary history.
Collapse
Affiliation(s)
- Nathália Siqueira Veríssimo Louzada
- Núcleo Multidisciplinar de Pesquisa em Biologia, Campus UFRJ Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William Corrêa Tavares
- Núcleo Multidisciplinar de Pesquisa em Biologia, Campus UFRJ Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Burtner AE, M. Grossnickle D, Santana SE, Law CJ. Gliding toward an understanding of the origin of flight in bats. PeerJ 2024; 12:e17824. [PMID: 39071138 PMCID: PMC11283779 DOI: 10.7717/peerj.17824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Bats are the only mammals capable of powered flight and have correspondingly specialized body plans, particularly in their limb morphology. The origin of bat flight is still not fully understood due to an uninformative fossil record but, from the perspective of a functional transition, it is widely hypothesized that bats evolved from gliding ancestors. Here, we test predictions of the gliding-to-flying hypothesis of the origin of bat flight by using phylogenetic comparative methods to model the evolution of forelimb and hindlimb traits on a dataset spanning four extinct bats and 231 extant mammals with diverse locomotor modes. Our results reveal that gliders exhibit adaptive trait optima (1) toward relatively elongate forelimbs that are intermediate between those of bats and non-gliding arborealists, and (2) toward relatively narrower but not longer hindlimbs that are intermediate between those of non-gliders and bats. We propose an adaptive landscape based on limb length and width optimal trends derived from our modeling analyses. Our results support a hypothetical evolutionary pathway wherein glider-like postcranial morphology precedes a bat-like morphology adapted to powered-flight, setting a foundation for future developmental, biomechanical, and evolutionary research to test this idea.
Collapse
Affiliation(s)
| | - David M. Grossnickle
- University of Washington, Seattle, WA, United States
- Oregon Institute of Technology, Klamath Falls, OR, United States
| | | | - Chris J. Law
- University of Washington, Seattle, WA, United States
- University of Texas at Austin, Austin, United States
| |
Collapse
|
3
|
Louzada NSV, Pessôa LM. External and Skeletal Morphology of Molossus fluminensis Lataste, 1891 (Chiroptera, Molossidae) with Notes on Quadrupedal Locomotion and Habitat Use. ACTA CHIROPTEROLOGICA 2023. [DOI: 10.3161/15081109acc2022.24.2.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nathália S. V. Louzada
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| | - Leila M. Pessôa
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Andronowski JM, Cole ME, Hieronymus TL, Davis RA, Usher LR, Cooper LN. Intraskeletal consistency in patterns of vascularity within bat limb bones. Anat Rec (Hoboken) 2021; 305:462-476. [PMID: 34101383 DOI: 10.1002/ar.24694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Bats are the only mammals to have achieved powered flight. A key innovation allowing for bats to conquer the skies was a forelimb modified into a flexible wing. The wing bones of bats are exceptionally long and dynamically bend with wingbeats. Bone microarchitectural features supporting these novel performance attributes are still largely unknown. The humeri and femora of bats are typically avascular, except for large-bodied taxa (e.g., pteropodid flying foxes). No thorough investigation of vascular canal regionalization and morphology has been undertaken as historically it has been difficult to reconstruct the 3D architecture of these canals. This study augments our understanding of the vascular networks supporting the bone matrix of a sample of bats (n = 24) of variable body mass, representing three families (Pteropodidae [large-bodied, species = 6], Phyllostomidae [medium-bodied, species = 2], and Molossidae [medium-bodied, species = 1]). We employed Synchrotron Radiation-based micro-Computed Tomography (SRμCT) to allow for a detailed comparison of canal morphology within humeri and femora. Results indicate that across selected bats, canal number per unit volume is similar independent of body size. Differences in canal morphometry based on body size and bone type appear primarily related to a broader distribution of the canal network as cortical volume increases. Heavier bats display a relatively rich vascular network of mostly longitudinally-oriented canals that are localized mainly to the mid-cortical and endosteal bone envelopes. Taken together, our results suggest that relative vascularity of the limb bones of heavier bats forms support for nutrient exchange in a regional pattern.
Collapse
Affiliation(s)
- Janna M Andronowski
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mary E Cole
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Reed A Davis
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Logan R Usher
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
5
|
López‐Aguirre C, Wilson LAB, Koyabu D, Tu VT, Hand SJ. Variation in cross‐sectional shape and biomechanical properties of the bat humerus under Wolff's law. Anat Rec (Hoboken) 2021; 304:1937-1952. [DOI: 10.1002/ar.24620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Camilo López‐Aguirre
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
| | - Laura A. B. Wilson
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
- School of Archaeology and Anthropology, Australian National University Canberra ACT Australia
| | - Daisuke Koyabu
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong Kowloon Hong Kong
- Department of Molecular Craniofacial Embryology Tokyo Medical and Dental University Tokyo Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Suzanne J. Hand
- Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
6
|
López-Aguirre C, Hand SJ, Koyabu D, Tu VT, Wilson LAB. Phylogeny and foraging behaviour shape modular morphological variation in bat humeri. J Anat 2020; 238:1312-1329. [PMID: 33372711 DOI: 10.1111/joa.13380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023] Open
Abstract
Bats show a remarkable ecological diversity that is reflected both in dietary and foraging guilds (FGs). Cranial ecomorphological adaptations linked to diet have been widely studied in bats, using a variety of anatomical, computational and mathematical approaches. However, foraging-related ecomorphological adaptations and the concordance between cranial and postcranial morphological adaptations remain unexamined in bats and limited to the interpretation of traditional aerodynamic properties of the wing (e.g. wing loading [WL] and aspect ratio [AR]). For this reason, the postcranial ecomorphological diversity in bats and its drivers remain understudied. Using 3D virtual modelling and geometric morphometrics (GMM), we explored the phylogenetic, ecological and biological drivers of humeral morphology in bats, evaluating the presence and magnitude of modularity and integration. To explore decoupled patterns of variation across the bone, we analysed whole-bone shape, diaphyseal and epiphyseal shape. We also tested whether traditional aerodynamic wing traits correlate with humeral shape. By studying 37 species from 20 families (covering all FGs and 85% of dietary guilds), we found similar patterns of variation in whole-bone and diaphyseal shape and unique variation patterns in epiphyseal shape. Phylogeny, diet and FG significantly correlated with shape variation at all levels, whereas size only had a significant effect on epiphyseal morphology. We found a significant phylogenetic signal in all levels of humeral shape. Epiphyseal shape significantly correlated with wing AR. Statistical support for a diaphyseal-epiphyseal modular partition of the humerus suggests a functional partition of shape variability. Our study is the first to show within-structure modular morphological variation in the appendicular skeleton of any living tetrapod. Our results suggest that diaphyseal shape correlates more with phylogeny, whereas epiphyseal shape correlates with diet and FG.
Collapse
Affiliation(s)
- Camilo López-Aguirre
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Suzanne J Hand
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daisuke Koyabu
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Laura A B Wilson
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Archaeology & Anthropology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|