1
|
Orkney A, Boerma DB, Hedrick BP. Evolutionary integration of forelimb and hindlimb proportions within the bat wing membrane inhibits ecological adaptation. Nat Ecol Evol 2025; 9:111-123. [PMID: 39487310 DOI: 10.1038/s41559-024-02572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
Bats and birds are defined by their convergent evolution of flight, hypothesized to require the modular decoupling of wing and leg evolution. Although a wealth of evidence supports this interpretation in birds, there has been no systematic attempt to identify modular organization in the bat limb skeleton. Here we present a phylogenetically representative and ecologically diverse collection of limb skeletal measurements from 111 extant bat species. We compare this dataset with a compendium of 149 bird species, known to exhibit modular evolution and anatomically regionalized skeletal adaptation. We demonstrate that, in contrast to birds, morphological diversification across crown bats is associated with strong trait integration both within and between the forelimb and hindlimb. Different regions of the bat limb skeleton adapt to accommodate variation in distinct ecological activities, with flight-style variety accommodated by adaptation of the distal wing, while the thumb and hindlimb play an important role facilitating adaptive responses to variation in roosting habits. We suggest that the wing membrane enforces evolutionary integration across the bat skeleton, highlighting that the evolution of the bat thumb is less correlated with the evolution of other limb bone proportions. We propose that strong limb integration inhibits bat adaptive responses, explaining their lower rates of phenotypic evolution and relatively homogeneous evolutionary dynamics in contrast to birds. Powered flight, enabled by the membranous wing, is therefore not only a key bat innovation but their defining inhibition.
Collapse
Affiliation(s)
- Andrew Orkney
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| | - David B Boerma
- Department of Biology, Dyson College of Arts and Sciences, Pace University, New York, NY, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Brandon P Hedrick
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Urošević A, Budečević S, Ljubisavljević K, Tomašević Kolarov N, Ajduković M. Morphological variation, modularity and integration in the scapula and humerus of Lissotriton newts. J Anat 2024; 245:97-108. [PMID: 38429993 PMCID: PMC11161826 DOI: 10.1111/joa.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
The modular organization of tetrapod paired limbs and girdles, influenced by the expression of Hox genes is one of the primary driving forces of the evolution of animal locomotion. The increased morphological diversification of the paired limbs is correlated with reduced between-limb covariation, while correlation within the elements is usually higher than between the elements. The tailed amphibians, such as Lissotriton newts, have a biphasic lifestyle with aquatic and terrestrial environments imposing different constraints on limb skeleton. By employing the methods of computerized microtomography and 3D geometric morphometrics, we explored the pattern of morphological variation, disparity, modularity and morphological integration in the proximal parts of the anterior limbs of six species of Eurasian small bodied newts. Although the species significantly differ in limb shape, there is a great overlap in morphology of scapula and humerus, and there are no differences in morphological disparity. For the scapula, the shape differences related to the duration of the aquatic period are in length, depth and curvature. The shape of the humerus is not affected by the length of aquatic period, and shape differences between the species are related to robustness of the body. The length of aquatic period has statistically supported phylogenetic signal. The scapula and humerus are structures of varying modularity. For the humerus, the strongest support on the phylogenetic level was for the capitulum/shaft hypothesis, which can also be interpreted as functional modularity. For the scapula, the greatest support was for the antero-posterior hypothesis of modularity in case of Lissotriton vulgaris, which can be explained by different functional roles and muscle insertion patterns, while there was no phylogenetic modularity. The modularity patterns seem to correspond with the general tetrapod pattern, with modularity being more pronounced in the distal structure. The future research should include more salamandrid taxa with different habitat preferences and both adult and larval stages, in order to explore how size, phylogeny and ecology affect the morphology and covariation patterns of limbs.
Collapse
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Budečević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Ljubisavljević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Farman RM, Archer M, Hand SJ. A geometric morphometric analysis of variation in Australian frog ilia and taxonomic interpretations. J Morphol 2023; 284:e21642. [PMID: 37708503 DOI: 10.1002/jmor.21642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Anurans including frogs and toads exhibit an ilium that is often regarded as taxonomically diagnostic. The ilium, one of the three paired bones that make up the pelvic girdle, has been important in the fossil record for identifying anuran morphotypes. Osteological collections for Australian frogs are rare in herpetological museums, and skeletonizing whole-bodied specimens requires destroying soft tissue morphology which is valuable to anuran specialists working on living species. Computed tomography scans provide the opportunity to study anuran osteology without the loss of soft tissues. Our study, based on microcomputed tomography scans of extant Australian frogs from the public repository Morphosource and from museum collections focuses on the morphological differences between Australian frogs at the familial and generic levels using geometric morphometrics to compare the diagnostic shape of the ilium. Principal component analysis (PCA) and canonical variate analysis (CVA) were conducted to assess differences in the ilium between supraspecific groups of Australian frogs. The canonical variates analysis accurately predicted group membership (i.e., the correct family) with up to 76.2% success for cross-validated predictions and 100% of original group predictions. While the sample was limited to familial and generic level analyses, our research shows that ilial morphology in Australian frogs is taxonomically informative. This research provides a guide for identifying Australian anurans, including fossils, as well as new information relevant to considerations about their phylogenetic relationships, and the potential use of the fossil record to enhance efforts to conserve threatened living frog species.
Collapse
Affiliation(s)
- Roy M Farman
- School of Biological, Earth and Environmental Sciences, Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Archer
- School of Biological, Earth and Environmental Sciences, Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanne J Hand
- School of Biological, Earth and Environmental Sciences, Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Jones MF, Hasiotis ST. Terrestrial locomotor behaviors of the big brown bat (Vespertilionidae: Eptesicus fuscus). MAMMAL RES 2023. [DOI: 10.1007/s13364-022-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Gaudioso PJ, Pérez MJ, Gamboa Alurralde S, Toledo N, Díaz MM. Exploration of the morphology and functional implications of the forelimb in bats (Mammalia, Chiroptera) from the Neotropical region. ZOOMORPHOLOGY 2023. [DOI: 10.1007/s00435-022-00588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Inferring the palaeobiology of palorchestid marsupials through analysis of mammalian humeral and femoral shape. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Phylogenetic, Allometric, and Ecological Factors Affecting Morphological Variation in the Scapula and Humerus of Spiny Rats (Rodentia: Echimyidae). J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractLocomotion, as a fundamental function in mammals directly associated with the use of ecological resources, is expected to have anatomical structures functionally committed that evolved under intense selective pressure, possibly carrying specializations for different locomotor habits. Among caviomorph rodents, the family Echimyidae stands out for having the greatest species richness, with relatively well-resolved phylogenetic relationships, wide variation in body mass, and remarkable diversity of locomotor habits, including arboreal, scansorial, semi-aquatic, semifossorial, and terrestrial forms. Thus, Echimyidae constitutes a promising model for understanding how phylogenetic, allometric, and ecological factors affect the evolution of postcranial structures directly linked to locomotor function. We investigated the influence of these three factors on scapular and humeral morphological variation in 38 echimyid species using two-dimensional geometric morphometry and phylogenetically informed comparative methods. Scapular and humeral shape variation had a low correlation with body mass and structure size, conveying a small or negligible allometric effect. Conversely, a significant moderate to strong phylogenetic signal was detected in both structures, suggesting that an important part of their morphometric variation results from shared evolutionary history. Notably, morphological variation of the scapula was extensively structured by phylogeny, without the marked influence of locomotor habits, suggesting that its shape may be a suitable taxonomic marker. Finally, locomotor habits were important in structuring the morphological variation of the humerus. Our results suggest that the morphologies of the scapula and humerus, despite being anatomically and functionally interconnected, were differentially shaped by ecological factors associated with locomotor habits.
Collapse
|
8
|
López-Aguirre C, Hand SJ, Simmons NB, Silcox MT. Untangling the ecological signal in the dental morphology in the bat superfamily Noctilionoidea. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09606-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Andronowski JM, Cole ME, Hieronymus TL, Davis RA, Usher LR, Cooper LN. Intraskeletal consistency in patterns of vascularity within bat limb bones. Anat Rec (Hoboken) 2021; 305:462-476. [PMID: 34101383 DOI: 10.1002/ar.24694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Bats are the only mammals to have achieved powered flight. A key innovation allowing for bats to conquer the skies was a forelimb modified into a flexible wing. The wing bones of bats are exceptionally long and dynamically bend with wingbeats. Bone microarchitectural features supporting these novel performance attributes are still largely unknown. The humeri and femora of bats are typically avascular, except for large-bodied taxa (e.g., pteropodid flying foxes). No thorough investigation of vascular canal regionalization and morphology has been undertaken as historically it has been difficult to reconstruct the 3D architecture of these canals. This study augments our understanding of the vascular networks supporting the bone matrix of a sample of bats (n = 24) of variable body mass, representing three families (Pteropodidae [large-bodied, species = 6], Phyllostomidae [medium-bodied, species = 2], and Molossidae [medium-bodied, species = 1]). We employed Synchrotron Radiation-based micro-Computed Tomography (SRμCT) to allow for a detailed comparison of canal morphology within humeri and femora. Results indicate that across selected bats, canal number per unit volume is similar independent of body size. Differences in canal morphometry based on body size and bone type appear primarily related to a broader distribution of the canal network as cortical volume increases. Heavier bats display a relatively rich vascular network of mostly longitudinally-oriented canals that are localized mainly to the mid-cortical and endosteal bone envelopes. Taken together, our results suggest that relative vascularity of the limb bones of heavier bats forms support for nutrient exchange in a regional pattern.
Collapse
Affiliation(s)
- Janna M Andronowski
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mary E Cole
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Reed A Davis
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Logan R Usher
- Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|