1
|
Elder A, Evans E, Brassey C, Kitchener AC, Hantke G, Grant R. Describing the musculature of mystacial pads in harbour seals (Phoca vitulina) using diceCT. J Anat 2025; 246:696-708. [PMID: 39404176 PMCID: PMC11996717 DOI: 10.1111/joa.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 04/16/2025] Open
Abstract
Pinnipeds have long, sensitive, moveable mystacial vibrissae. In other mammals, intrinsic muscles contribute to protracting the vibrissae. However, the mystacial muscles of pinnipeds have not yet been systematically described. Using traditional histological methods provides us with two-dimensional muscle images, but having the ability to visualise these structures in three dimensions would allow for a more comprehensive understanding of pinniped vibrissal anatomy, especially given the challenges posed by their large and extremely curved mystacial pad. We predicted that harbour seals would have large, regular intrinsic muscles due to their well-organised, moveable vibrissae. We adopted diffusible iodine contrast-enhanced computer tomography (diceCT) to describe, for the first time, the three-dimensional architecture of the mystacial vibrissal muscles found in harbour seals. Our observations show that their vibrissae are organised into grids within the mystacial pad. We identified both sling-shaped and oblique intrinsic muscles that connect one vibrissae to the next in the same row. We also identified extrinsic muscles, including the m. nasolabialis, m. maxillolabialis, m. levator nasolabialis and m. orbicularis oris. Contrary to our prediction, the intrinsic muscles were not very large, although they were regularly distributed throughout the pad. Rather, the extrinsic muscles, particularly the m. nasolabialis and m. maxillolabialis were large, deep and well-defined, running throughout the length of the mystacial pad. Therefore, we suggest that these extrinsic muscles, the m. nasolabialis and m. maxillolabialis, are responsible for driving vibrissal protraction underwater. These findings demonstrate the importance of three-dimensional visualisation techniques in advancing our understanding of mystacial anatomy and function in pinnipeds.
Collapse
Affiliation(s)
- Alyx Elder
- Department of Natural ScienceManchester Metropolitan UniversityManchesterUK
| | - Elizabeth Evans
- NXCT at the Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | - Charlotte Brassey
- Department of Natural ScienceManchester Metropolitan UniversityManchesterUK
| | - Andrew C. Kitchener
- Department of Natural SciencesNational Museums ScotlandEdinburghScotlandUK
- School of GeosciencesUniversity of EdinburghEdinburghUK
| | - George Hantke
- Department of Natural SciencesNational Museums ScotlandEdinburghScotlandUK
| | - Robyn Grant
- Department of Natural ScienceManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
2
|
Cunningham P, Shankar M, vonHoldt B, Brzeski KE, Kienle SS. Coyotes can do 'puppy dog eyes' too: comparing interspecific variation in Canis facial expression muscles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241046. [PMID: 39359465 PMCID: PMC11444785 DOI: 10.1098/rsos.241046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Facial expressions are critical for non-verbal communication. The Canis genus epitomizes the interplay between behaviour and morphology in the evolution of non-verbal communication. Recent work suggests that the levator anguli oculi medialis (LAOM) muscle is unique to dogs (Canis familiaris) within the Canis genus and evolved due to domestication. The LAOM raises the inner eyebrows, resulting in the 'puppy dog eyes' expression. Here, we test whether the LAOM is a derived trait in dogs by (i) examining the facial expression muscles of a closely related and ancestral wild Canis species, the coyote (C. latrans) and (ii) comparing our results with other Canis and canid taxa. We discover that coyotes have a well-developed LAOM like dogs, which differs from the modified/absent LAOM in grey wolves. Our findings challenge the hypothesis that the LAOM developed due to domestication. We suggest that the LAOM is a basal trait that was lost in grey wolves. Additionally, we find inter- and intraspecific variations in the size of the muscles of the outer ear, forehead, lips and rostrum, indicating potential adaptations related to sensory perception, communication and individual-level functional variations within canids. Together, this research expands our knowledge of facial expressions, their evolution and their role in communication.
Collapse
Affiliation(s)
| | - Mahita Shankar
- Department of Biology, Baylor University, Waco, TX76707, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Kristin E. Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI49931, USA
| | - Sarah S. Kienle
- Department of Biology, Baylor University, Waco, TX76707, USA
| |
Collapse
|
3
|
Boisville M, Chatar N, Kohno N. New species of Ontocetus (Pinnipedia: Odobenidae) from the Lower Pleistocene of the North Atlantic shows similar feeding adaptation independent to the extant walrus ( Odobenus rosmarus). PeerJ 2024; 12:e17666. [PMID: 39157769 PMCID: PMC11328838 DOI: 10.7717/peerj.17666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Ontocetus is one of the most notable extinct odobenines owing to its global distribution in the Northern Hemisphere. Originating in the Late Miocene of the western North Pacific, this lineage quickly spread to the Atlantic Ocean during the Pliocene, with notable occurrences in England, Belgium, The Netherlands, Morocco and the eastern seaboard of the United States. Reassessment of a pair of mandibles from the Lower Pleistocene of Norwich (United Kingdom) and a mandible from the Upper Pliocene of Antwerp (Belgium) that were referred to as Ontocetus emmonsi reveals existences of features of both Ontocetus and Odobenus. The presence of four post-canine teeth, a lower canine larger than the cheek-teeth and a lower incisor confirms the assignment to Ontocetus; simultaneously, characteristics such as a fused and short mandibular symphysis, a well-curved mandibular arch and thin septa between teeth align with traits usually found in Odobenus. Based on a combination of these characters, we describe Ontocetus posti, sp. nov. Its mandibular anatomy suggests, a better adaptation to suction-feeding than what was previously described in the genus suggesting that Ontocetus posti sp. nov. likely occupied a similar ecological niche to the extant walrus Odobenus rosmarus. Originating from the North Pacific Ocean, Ontocetus most likely dispersed via the Central American Seaway. Although initially discovered in the Lower Pliocene deposits of the western North Atlantic, Ontocetus also left its imprint in the North Sea basin and Moroccan Plio-Pleistocene deposits. The closure of the Isthmus of Panama during the Mio-Pliocene boundary significantly impacted the contemporary climate, inducing global cooling. This event constrained Ontocetus posti in the North Sea basin leaving the taxon unable to endure the abrupt climate changes of the Early Pleistocene, ultimately going extinct before the arrival of the extant counterpart, Odobenus rosmarus.
Collapse
Affiliation(s)
- Mathieu Boisville
- Earth Historical Analysis, Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Narimane Chatar
- Evolution & Diversity Dynamics Lab, Department of Geology, University of Liège, Liège, Belgium
- Functional Anatomy and Vertebrate Evolution Lab, Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States
| | - Naoki Kohno
- Earth Historical Analysis, Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Antoine A, Labrousse S, Goulet P, Chevallay M, Laborie J, Picard B, Guinet C, Nerini D, Charrassin J, Heerah K. Beneath the Antarctic sea-ice: Fine-scale analysis of Weddell seal ( Leptonychotes weddellii) behavior and predator-prey interactions, using micro-sonar data in Terre Adélie. Ecol Evol 2023; 13:e10796. [PMID: 38089897 PMCID: PMC10714067 DOI: 10.1002/ece3.10796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Lactation is the most energy-demanding event in mammals' reproduction. In pinnipeds, females are the only food providers to the young and have developed numerous behavioral and physiological lactation strategies, from capital-breeding to income-breeding. Lactating females' fine-scale foraging strategy, and precise understanding of how females supplement their pup's needs as well as their own are important to understand the species' ecology and energetic balance. Polar pinnipeds, inhabiting extreme environments, are sensitive to climate change and variability, understanding their constraints and foraging strategy during lactation is therefore important. In 2019, three sonar tags were deployed on lactating Weddell seals in Terre Adélie (East Antarctica) for 7 days, to study fine-scale predator-prey interactions. Feeding activity was mostly benthic, reduced, central-placed, and spatially limited. Females spent most of their time hauled-out. A total of 331 prey capture attempts (PrCAs) were recorded using triaxial acceleration data, with 125 prey identified on echograms (5 cm, acoustic size). All PrCAs occurred on the seafloor, shallower than usual records (mean depth of 88 m, vs 280 m after their molt). We also found that they only fed in three of the five identified dive shapes, during the ascent or throughout the dive. Half of the prey were reactive to the seal's approach, either leaving the seafloor, or escaping just above the seafloor, suggesting that the seals hunt by chasing them from the seabed. Seals continuously scanned the area during the approach phase, evoking opportunistic foraging. Our results provide additional evidence that Weddell seal forage during lactation, displaying a mix of capital-breeding and income-breeding strategies during this period of physiological stress. This work sheds light on previously unexplored aspects of their foraging behavior, such as shallow water environments, targeting benthic prey, generally focusing on single prey rather than schools, and evidence of visual scanning through observed head movements.
Collapse
Affiliation(s)
- Adélie Antoine
- Laboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN), UMR 7159 Sorbonne‐Université, CNRS, MNHN, IRD, IPSLParisFrance
| | - Sara Labrousse
- Laboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN), UMR 7159 Sorbonne‐Université, CNRS, MNHN, IRD, IPSLParisFrance
| | - Pauline Goulet
- Centre d'Etudes Biologiques de Chizé, CNRS‐La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - Mathilde Chevallay
- Centre d'Etudes Biologiques de Chizé, CNRS‐La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - Joris Laborie
- Department of BiologyAarhus UniversityAarhusDenmark
- Bretagne VivanteBrestFrance
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé, CNRS‐La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS‐La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - David Nerini
- Mediterranean Institute of Oceanography, Pytheas Institute, UMR 7294MarseilleFrance
| | - Jean‐Benoît Charrassin
- Laboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN), UMR 7159 Sorbonne‐Université, CNRS, MNHN, IRD, IPSLParisFrance
| | - Karine Heerah
- Department of BiologyAarhus UniversityAarhusDenmark
- France Energie MarinePlouzanéFrance
| |
Collapse
|
5
|
Nieto-Miranda JJ, Aguilar-Medrano R, Hernández-Camacho CJ, Peredo CM, Cruz-Escalona VH. Mechanical properties of the California sea lion (Zalophus californianus) and northern elephant seal (Mirounga angustirostris) lower jaws explain trophic plasticity. Anat Rec (Hoboken) 2023; 306:2597-2609. [PMID: 36794994 DOI: 10.1002/ar.25180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The fossil record of pinnipeds documents a suite of morphological changes that facilitate their ecological transition from a terrestrial to an aquatic lifestyle. Among these is the loss of the tribosphenic molar and the behavior typically associated with it in mammals: mastication. Instead, modern pinnipeds exhibit a broad range of feeding strategies that facilitate their distinct aquatic ecologies. Here, we examine the feeding morphology of two species of pinnipeds with disparate feeding ecologies: Zalophus californianus, a specialized raptorial biter, and Mirounga angustirostris, a suction specialist. Specifically, we test whether the morphology of the lower jaws facilitates trophic plasticity in feeding for either of these species. We used finite element analysis (FEA) to simulate the stresses during the opening and closing of the lower jaws in these species to explore the mechanical limits of their feeding ecology. Our simulations demonstrate that both jaws are highly resistant to the tensile stresses experienced during feeding. The lower jaws of Z. californianus experienced the maximum stress at the articular condyle and the base of the coronoid process. The lower jaws of M. angustirostris experienced the maximum stress at the angular process and were more evenly distributed throughout the body of the mandible. Surprisingly, the lower jaws of M. angustirostris were even more resistant to the stresses experienced during feeding than those of Z. californianus. Thus, we conclude that the superlative trophic plasticity of Z. californianus is driven by other factors unrelated to the mandible's tensile resistance to stress during feeding.
Collapse
Affiliation(s)
- J Jesús Nieto-Miranda
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Azcapotzalco, Ciudad de México, Mexico
| | - Rosalía Aguilar-Medrano
- Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Claudia J Hernández-Camacho
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | | | - Víctor Hugo Cruz-Escalona
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| |
Collapse
|
6
|
Werth AJ, Crompton AW. Cetacean tongue mobility and function: A comparative review. J Anat 2023; 243:343-373. [PMID: 37042479 PMCID: PMC10439401 DOI: 10.1111/joa.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cetaceans are atypical mammals whose tongues often depart from the typical (basal) mammalian condition in structure, mobility, and function. Their tongues are dynamic, innovative multipurpose tools that include the world's largest muscular structures. These changes reflect the evolutionary history of cetaceans' secondary adaptation to a fully aquatic environment. Cetacean tongues play no role in mastication and apparently a greatly reduced role in nursing (mainly channeling milk ingestion), two hallmarks of Mammalia. Cetacean tongues are not involved in drinking, breathing, vocalizing, and other non-feeding activities; they evidently play no or little role in taste reception. Although cetaceans do not masticate or otherwise process food, their tongues retain key roles in food ingestion, transport, securing/positioning, and swallowing, though by different means than most mammals. This is due to cetaceans' aquatic habitat, which in turn altered their anatomy (e.g., the intranarial larynx and consequent soft palate alteration). Odontocetes ingest prey via raptorial biting or tongue-generated suction. Odontocete tongues expel water and possibly uncover benthic prey via hydraulic jetting. Mysticete tongues play crucial roles driving ram, suction, or lunge ingestion for filter feeding. The uniquely flaccid rorqual tongue, not a constant volume hydrostat (as in all other mammalian tongues), invaginates into a balloon-like pouch to temporarily hold engulfed water. Mysticete tongues also create hydrodynamic flow regimes and hydraulic forces for baleen filtration, and possibly for cleaning baleen. Cetacean tongues lost or modified much of the mobility and function of generic mammal tongues, but took on noteworthy morphological changes by evolving to accomplish new tasks.
Collapse
Affiliation(s)
| | - A. W. Crompton
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
7
|
Investigating the land-to-sea transition in carnivorans from the evolution of sacrum morphology in pinnipeds. J MAMM EVOL 2023. [DOI: 10.1007/s10914-023-09650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
AbstractThe form and function of the sacrum are of great relevance to understand the evolution of locomotion in tetrapods because it is a key piece of the vertebrate skeleton. The sacrum connects the caudal and presacral regions of the vertebral column and the hindlimbs through the pelvis. Here, we investigate sacrum shape evolution in pinnipeds (Carnivora: Pinnipedia) in relation to terrestrial mammalian carnivorans (fissipeds), and we include crown and stem taxa to quantify the morphological changes they experience in relation to the aquatic environment they inhabit. We use 3D geometric morphometric methods to explore the morphological variability and disparity of the sacrum in a set of terrestrial and aquatic carnivoran species. Our results show that the morphology of the sacrum of each pinniped family is remarkably different and that these differences may be related to the aquatic mode of locomotion (pectoral or pelvic oscillation), the use of hindlimbs to support body weight on land (otariids in contrast with phocids), and the presence or absence of a functional tail. In addition, disparity-through-time analyses indicate that the sacrum of pinnipeds is less constrained than that of fissipeds, which suggests a gravitational origin of such constraints in fissipeds. In conclusion, our results give further support to the important role played by this skeletal structure in the locomotory adaptations of mammals.
Collapse
|
8
|
Valenzuela-Toro AM, Mehta R, Pyenson ND, Costa DP, Koch PL. Feeding morphology and body size shape resource partitioning in an eared seal community. Biol Lett 2023; 19:20220534. [PMID: 36883314 PMCID: PMC9993223 DOI: 10.1098/rsbl.2022.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Body size and feeding morphology influence how animals partition themselves within communities. We tested the relationships among sex, body size, skull morphology and foraging in sympatric otariids (eared seals) from the eastern North Pacific Ocean, the most diverse otariid community in the world. We recorded skull measurements and stable carbon (δ13C) and nitrogen (δ15N) isotope values (proxies for foraging) from museum specimens in four sympatric species: California sea lions (Zalophus californianus), Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and Guadalupe fur seals (Arctocephalus townsendi). Species and sexes had statistical differences in size, skull morphology and foraging significantly affecting the δ13C values. Sea lions had higher δ13C values than fur seals, and males of all species had higher values than females. The δ15N values were correlated with species and feeding morphology; individuals with stronger bite forces had higher δ15N values. We also found a significant community-wide correlation between skull length (indicator of body length), and foraging, with larger individuals having nearshore habitat preferences, and consuming higher trophic level prey than smaller individuals. Still, there was no consistent association between these traits at the intraspecific level, indicating that other factors might account for foraging variability.
Collapse
Affiliation(s)
- Ana M Valenzuela-Toro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Rita Mehta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Nicholas D Pyenson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA.,Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Paul L Koch
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Nourbakhsh H, Adams A, Raverty S, Vogl AW, Haulena M, Skoretz SA. Microscopic Anatomy of the Upper Aerodigestive Tract in Harbour Seals (Phoca vitulina): Functional Adaptations to Swallowing. Anat Rec (Hoboken) 2022; 306:947-959. [PMID: 35719006 DOI: 10.1002/ar.25025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022]
Abstract
Abandoned harbour seal pups (Phoca vitulina) are frequently recovered by rehabilitation centres and often require intensive nursing, gavage feeding and swallowing rehabilitation prior to anticipated release. Seal upper aerodigestive tract (UAT) histology descriptions relevant to deglutition are limited, impacting advances in rehabilitation practice. Therefore, we examined the histological characteristics of the harbour seal UAT to understand species-specific functional anatomy and characterize adaptations. To this end, we conducted gross dissections, compiled measurements and reviewed histologic features of the UAT structures of 14 pre-weaned harbour seal pups that died due to natural causes or were humanely euthanized. Representative samples for histologic evaluation included the tongue, salivary glands, epiglottis, and varying levels of the trachea and esophagus. Histologically, there was a prominent muscularis in the tongue with fewer lingual papillae types compared to humans. Abundant submucosal glands were observed in lateral and pharyngeal parts of the tongue and rostral parts of the esophagus. When compared to other mammalian species, there was a disproportionate increase in the amount of striated muscle throughout the length of the esophageal muscularis externa. This may indicate a lesser degree of autonomic control over the esophageal phase of swallowing in harbour seals. Our study represents the first detailed UAT histological descriptions for neonatal harbour seals. Collectively, these findings support specific anatomic and biomechanic adaptations relevant to suckling, prehension and deglutition. This work will inform rehabilitation practices and guide future studies on swallowing physiology in harbour seals with potential applications to other pinniped and otariid species in rehabilitation settings. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hirad Nourbakhsh
- School of Audiology & Speech Sciences, University of British Columbia, Vancouver, BC
| | - Arlo Adams
- Life Sciences Institute & Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC
| | - Stephen Raverty
- Animal Health Center, 1767 Angus Campbell Road, Abbotsford, BC
| | - A Wayne Vogl
- Life Sciences Institute & Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC
| | - Martin Haulena
- Vancouver Aquarium Marine Mammal Rescue Centre, Vancouver, BC
| | - Stacey A Skoretz
- School of Audiology & Speech Sciences, University of British Columbia, Vancouver, BC.,Department of Critical Care Medicine, University of Alberta, Edmonton, AB
| |
Collapse
|