1
|
Belyaev RI, Prilepskaya NE. The elephant backbone: Morphological differences, dorsostability, and vertebral fusions. J Anat 2025. [PMID: 40405373 DOI: 10.1111/joa.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/24/2025] Open
Abstract
The vertebral column of elephants has several unique features that distinguish them from all other modern-day mammals. In this study, we examine various aspects of the functional morphology and intervertebral mobility of the elephant backbone, comparing it to that of other large herbivorous mammals, as well as to extinct Mammuthus primigenius, M. trogontherii, and Mammut americanum. The elephant vertebral column is characterized by a high degree of dorsostability. All three directions of intervertebral mobility (sagittal and lateral bending, and axial rotation), in all backbone modules, demonstrate the lowest amplitudes of motion known for mammals. In elephants, neck mobility is largely replaced by the mobility of the proboscis; the axial rotation in the thoracic region is not used for maneuvering, and the sagittal flexibility of the lumbar region is practically absent during locomotion. The mobility of the elephant cervical region in the sagittal and frontal planes is low; however, it is still responsible for movements that require significant force, such as tournament fights and breaking tree branches. The lumbosacral joint characterized by sagittal hypermobility in most terrestrial mammals is even less mobile than the intralumbar joints in elephantids. The thoracic-lumbo-sacral region of proboscideans is arch-shaped in lateral view, resulting from the ventral-ward tapering of the vertebral centra (the length along the spinal canal is longer than the length at the ventral side of the centrum). This tapering is most pronounced in the posterior thoracic and lumbar vertebrae. In contrast, the vertebral centra in the middle part of the trunk (T8-T14) are almost rectangular in lateral view. This arch-shaped structure provides static support to the vertebral column, preventing sagging. The absolute length of the spinous processes in proboscideans is comparable to those of the largest bovines and exceeds the lengths of extant rhinoceroses. However, relative to the height of the vertebral centrum, the spinous processes in the withers area of elephants are 2-4 times shorter than those in bovines and rhinoceroses. The profile and inclination angle of the spinous processes differ drastically among different taxa. Despite these differences, we found no significant variations in the sagittal flexibility of the backbone among the different elephantids. We hypothesize that the observed differences may relate to how the arch shape of the backbone is maintained in the posterior part of the thoracolumbar region. In modern-day elephants, dorsostability is primarily supported by a strong supraspinous ligament with short intersegmental portions. In mammoths, this is probably maintained by the linea alba and the abdominal muscles.
Collapse
Affiliation(s)
- Ruslan I Belyaev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Natalya E Prilepskaya
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Law CJ, Hlusko LJ, Tseng ZJ. The Carnivoran Adaptive Landscape Reveals Trade-offs among Functional Traits in the Skull, Appendicular, and Axial Skeleton. Integr Org Biol 2025; 7:obaf001. [PMID: 39850959 PMCID: PMC11756339 DOI: 10.1093/iob/obaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
Analyses of form-function relationships are widely used to understand links between morphology, ecology, and adaptation across macroevolutionary scales. However, few have investigated functional trade-offs and covariance within and between the skull, limbs, and vertebral column simultaneously. In this study, we investigated the adaptive landscape of skeletal form and function in carnivorans to test how functional trade-offs among these skeletal regions contribute to ecological adaptations and the topology of the landscape. We found that morphological proxies of function derived from carnivoran skeletal regions exhibit trade-offs and covariation across their performance surfaces, particularly in the appendicular and axial skeletons. These functional trade-offs and covariation correspond as adaptations to different adaptive landscapes when optimized by various factors including phylogeny, dietary ecology, and, in particular, locomotor mode. Lastly, we found that the topologies of the optimized adaptive landscapes and underlying performance surfaces are largely characterized as a single gradual gradient rather than as rugged, multipeak landscapes with distinct zones. Our results suggest that carnivorans may already occupy a broad adaptive zone as part of a larger mammalian adaptive landscape that masks the form and function relationships of skeletal traits.
Collapse
Affiliation(s)
- C J Law
- Burke Museum and Department of Biology, University of Washington, Seattle, WA 91195, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - L J Hlusko
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | - Z J Tseng
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Belyaev RI, Boeskorov GG, Kuznetsov AN, Rotonda M, Prilepskaya NE. Comparative study of the body proportions in Elephantidae and other large herbivorous mammals. J Anat 2025; 246:63-85. [PMID: 39395275 DOI: 10.1111/joa.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024] Open
Abstract
In this study, we aimed to achieve three objectives: (1) to precisely characterize the body plans of Elephantidae and other large herbivorous mammals; (2) based on this analysis, to determine whether the body plans of the extinct woolly mammoth (Mammuthus primigenius) and steppe mammoth (M. trogontherii) differ from those of modern-day Elephantidae: the Asian elephant (Elephas maximus), the African bush (Loxodonta africana), and forest (L. cyclotis) elephants; (3) to analyze how the body plans have changed in extant perissodactyls and proboscideans compared with their Paleogene ancestors. To accomplish this, we studied mammoth skeletons from the collections of Russian museums and compared this data with a large number of skeletons of extant elephantids, odd-toed, and even-toed ungulates, as well as their extinct relatives. We showed that three genera of Elephantidae are characterized by a homogeneous body plan, which is markedly different from other large herbivores. Elephantids break the interrelationship, that exists in artiodactyls and perissodactyls, between the total length of the head and neck on one side and the limb's segments on the other. Their limbs are very tall (inferior in this regard among large ungulates only to the giraffe), and, contrary to the other large herbivorous mammals, elongated due to the length of the proximal segments. This allows them to effectively utilize the principle of inverted pendulum (straight-legged walking) in locomotion. The biggest differences in the body plan of mammoths compared with extant elephants are a markedly larger pelvis, elongated fore- and hindlimbs (due to the increased relative length of their proximal segments), and different proportions of the skull. The body plans of plesiomorphic Paleogene proboscideans and perissodactyls differed markedly from their descendants in every body part; these differences are related, on the one hand, to the allometric growth, and on the other hand, to the advancement of the locomotor apparatus in the course of their evolution. The most notable difference in the body plan between Paleogene proboscidean Moeritherium and extant Elephantidae is the ~2-fold increase in relative limb height.
Collapse
Affiliation(s)
- Ruslan I Belyaev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Gennady G Boeskorov
- Siberian Branch, Russian Academy of Sciences, Diamond and Precious Metals Geology Institute, Yakutsk, Russian Federation
- Academy of Sciences of Sakha (Yakutia) Republic, Yakutsk, Russian Federation
| | - Alexander N Kuznetsov
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mathys Rotonda
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Natalya E Prilepskaya
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Kort AE, Jones KE. Function of revolute zygapophyses in the lumbar vertebrae of early placental mammals. Anat Rec (Hoboken) 2024; 307:1918-1929. [PMID: 37712919 DOI: 10.1002/ar.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
The unique morphology of mammalian lumbar vertebrae allows the spine to flex and extend in the sagittal plane during locomotion. This movement increases stride length and allows mammals to efficiently breathe while running with an asymmetric gait. In extant mammals, the amount of flexion that occurs varies across different locomotor styles, with dorsostable runners relying more on movement of long limbs to run and dorsomobile runners incorporating more flexion of the back. Although long limbs and a stabilized lumbar region are commonly associated with each other in extant mammals, many "archaic" placental mammals with short limbs had lumbar vertebrae with revolute zygapophyses. These articulations with an interlocking S-shape are found only in artiodactyls among extant mammals and have been hypothesized to stabilize against flexion of the back. This would suggest that archaic placental mammals may not have incorporated dorsoventral flexion into locomotion to the same extent as extant mammals with similar proportions. We tested the relative mobility of fossil lumbar vertebrae from two early placental mammals, the creodonts Patriofelis and Limnocyon, to see how these vertebrae may have functioned. We compared range of motion (ROM) between the original vertebrae, with revolute morphology and digitally altered vertebrae with a flat morphology. We found that the revolute morphology had relatively little effect on dorsoventral flexion and instead that it likely prevented disarticulation due to shear forces on the spine. These results show that flexion of the spine has been an important part of mammalian locomotion for at least 50 million years.
Collapse
Affiliation(s)
- Anne E Kort
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Katrina E Jones
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Panyutina AA, Kuznetsov AN. Are owls technically capable of making a full head turn? J Morphol 2024; 285:e21669. [PMID: 38361271 DOI: 10.1002/jmor.21669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 02/17/2024]
Abstract
The three-dimensional configuration of the neck that produces extreme head turn in owls was studied using the Joint Coordinate System. The limits of planar axial rotation (AR), lateral, and sagittal bending in each vertebral joint were measured. They are not extraordinary among birds, except probably for the extended ability for AR. The vertebral joint angles involved in the 360° head turn do not generally exceed the limits of planar mobility. Rotation in one plane does not expand the range of motion in the other, with one probable exception being extended dorsal bending in the middle of the neck. Therefore, the extreme 360° head turn can be presented as a simple combination of the three planar motions in the neck joints. Surprisingly, certain joints are always laterally bent or axially rotated to the opposite side than the head was turned. This allows keeping the anterior part of the neck parallel to the thoracic spine, which probably helps preserve the ability for peering head motions throughout the full head turn. The potential ability of one-joint muscles of the owl neck, the mm. intertransversarii, to ensure the 360° head turn was addressed. It was shown that the 360° head turn does not require these muscles to shorten beyond the known contraction limit of striated vertebrate muscles. Shortening by 50% or less is enough for the mm. intertransversarii in the middle neck region for the 360° head turn. This study has broad implications for further research on vertebral mobility and function in a variety of tetrapods, providing a new method for CT scan-based measurement of intervertebral angles.
Collapse
|
6
|
Belyaev RI, Nikolskaia P, Bushuev AV, Panyutina AA, Kozhanova DA, Prilepskaya NE. Running, jumping, hunting, and scavenging: Functional analysis of vertebral mobility and backbone properties in carnivorans. J Anat 2024; 244:205-231. [PMID: 37837214 PMCID: PMC10780164 DOI: 10.1111/joa.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023] Open
Abstract
Carnivorans are well-known for their exceptional backbone mobility, which enables them to excel in fast running and long jumping, leading to them being among the most successful predators amongst terrestrial mammals. This study presents the first large-scale analysis of mobility throughout the presacral region of the vertebral column in carnivorans. The study covers representatives of 6 families, 24 genera and 34 species. We utilized a previously developed osteometry-based method to calculate available range of motion, quantifying all three directions of intervertebral mobility: sagittal bending (SB), lateral bending (LB), and axial rotation (AR). We observed a strong phylogenetic signal in the structural basis of the vertebral column (vertebral and joint formulae, length proportions of the backbone modules) and an insignificant phylogenetic signal in most characteristics of intervertebral mobility. This indicates that within the existing structure (stabilization of which occurred rather early in different phylogenetic lineages), intervertebral mobility in carnivorans is quite flexible. Our findings reveal that hyenas and canids, which use their jaws to seize prey, are characterized by a noticeably elongated cervical region and significantly higher SB and LB mobility of the cervical joints compared to other carnivorans. In representatives of other carnivoran families, the cervical region is very short, but the flexibility of the neck (both SB and LB) is significantly higher than that of short-necked odd-toed and even-toed ungulates. The lumbar region of the backbone in carnivorans is dorsomobile in the sagittal plane, being on average ~23° more mobile than in artiodactyls and ~38° more mobile than in perissodactyls. However, despite the general dorsomobility, only some representatives of Canidae, Felidae, and Viverridae are superior in lumbar flexibility to the most dorsomobile ungulates. The most dorsomobile artiodactyls are equal or even superior to carnivorans in their ability to engage in dorsal extension during galloping. In contrast, carnivorans are far superior to ungulates in their ability to engage ventral flexion. The cumulative SB in the lumbar region in carnivorans largely depends on the mode of running and hunting. Thus, adaptation to prolonged and enduring pursuit of prey in hyenas is accompanied by markedly reduced SB flexibility in the lumbar region. A more dorsostable run is also a characteristic of the Ursidae, and the peculiar maned wolf. Representatives of Felidae and Canidae have significantly more available SB mobility in the lumbar region. However, they fully engage it only occasionally at key moments of the hunt associated with the direct capture of the prey or when running in a straight line at maximum speed.
Collapse
Affiliation(s)
- Ruslan I. Belyaev
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| | - Polina Nikolskaia
- Geological InstituteRussian Academy of SciencesMoscowRussian Federation
| | - Andrey V. Bushuev
- Department of Vertebrate Zoology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | | | - Darya A. Kozhanova
- Department of Paleontology, Faculty of GeologyLomonosov Moscow State UniversityMoscowRussian Federation
| | - Natalya E. Prilepskaya
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
7
|
Belyaev RI, Kuznetsov AN, Prilepskaya NE. Truly dorsostable runners: Vertebral mobility in rhinoceroses, tapirs, and horses. J Anat 2023; 242:568-591. [PMID: 36519561 PMCID: PMC10008283 DOI: 10.1111/joa.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The vertebral column is a hallmark of vertebrates; it is the structural basis of their body and the locomotor apparatus in particular. Locomotion of any vertebrate animal in its typical habitat is directly associated with functional adaptations of its vertebrae. This study is the first large-scale analysis of mobility throughout the presacral region of the vertebral column covering a majority of extant odd-toed ungulates from 6 genera and 15 species. In this study, we used a previously developed osteometry-based method to calculate available range of motion. We quantified all three directions of intervertebral mobility: sagittal bending (SB), lateral bending (LB), and axial rotation (AR). The cervical region in perissodactyls was found to be the most mobile region of the presacral vertebral column in LB and SB. Rhinoceroses and tapirs are characterized by the least mobile necks in SB among odd-toed and even-toed ungulates. Equidae are characterized by very mobile necks, especially in LB. The first intrathoracic joint (T1-T2) in Equidae and Tapiridae is characterized by significantly increased mobility in the sagittal plane compared to the typical thoracic joints and is only slightly less mobile than typical cervical joints. The thoracolumbar part of the vertebral column in odd-toed ungulates is very stiff. Perissodactyls are characterized by frequent fusions of vertebrae with each other with complete loss of mobility. The posterior half of the thoracic region in perissodactyls is characterized by especially stiff intervertebral joints in the SB direction. This is probably associated with hindgut fermentation in perissodactyls: the sagittal stiffness of the posterior thoracic region of the vertebral column is able to passively support the hindgut heavily loaded with roughage. Horses are known as a prime example of a dorsostable galloper among mammals. However, based on SB in the lumbosacral part of the backbone, equids appear to be the least dorsostable among extant perissodactyls; the cumulative SB in equids and tapirs is as low as in the largest representatives of artiodactyls, while in Rhinocerotidae it is even lower representing the minimum across all odd-toed and even-toed ungulates. Morphological features of small Paleogene ancestors of rhinoceroses and equids indicate that dorsostability is a derived feature of perissodactyls and evolved convergently in the three extant families.
Collapse
Affiliation(s)
- Ruslan I. Belyaev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussian Federation
| | - Alexander N. Kuznetsov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussian Federation
- Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussian Federation
| | - Natalya E. Prilepskaya
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussian Federation
| |
Collapse
|