1
|
Koruga D, Stanković I, Matija L, Kuhn D, Christ B, Dembski S, Jevtić N, Janać J, Pavlović V, De Wever B. Comparative Studies of the Structural and Physicochemical Properties of the First Fullerene Derivative FD-C 60 (Fullerenol) and Second Fullerene Derivate SD-C 60 (3HFWC). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:480. [PMID: 38470808 DOI: 10.3390/nano14050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in the comparative characterization of FD-C60 and SD-C60 with the same OH groups in their core. FD-C60 as an individual structure was about 1.3 nm in size, while SD-C60 as an individual structure was 10-30 nm in size. Based on ten physicochemical methods and techniques, FD-C60 and SD-C60 were found to be two different substances in terms of size, structure, and physicochemical properties; FD-C60, at 100 °C, had endothermic characteristics, while SD-C60, at 133 °C, had exothermic characteristics; FD-C60 did not have water layers, while SD-C60 had water layers; the zeta potential of FD-C60 was -25.85 mV, while it was -43.29 mV for SD-C60. SD-C60 is a promising substance for use in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Djuro Koruga
- NanoLab, Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, 11220 Belgrade, Serbia
- NanoWorld, 11043 Belgrade, Serbia
| | - Ivana Stanković
- NanoLab, Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, 11220 Belgrade, Serbia
| | - Lidija Matija
- NanoLab, Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, 11220 Belgrade, Serbia
| | | | - Bastian Christ
- Fraunhofer, Institute for Silicate Research ISR, 97082 Würzburg, Germany
| | - Sofia Dembski
- Fraunhofer, Institute for Silicate Research ISR, 97082 Würzburg, Germany
| | | | | | - Vladimir Pavlović
- TEM Laboratory, Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
2
|
Perovic M, Ciric J, Matovic V, Srbovan M, Koruga D, Kanazir S, Ivkovic S. The presymptomatic treatment with 3HFWC nanosubstance decreased plaque load in 5XFAD mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14188. [PMID: 36971205 PMCID: PMC10915986 DOI: 10.1111/cns.14188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION In the present study, we assessed the effects of the hyper-harmonized-hydroxylated fullerene-water complex (3HFWC) on Alzheimer's disease (AD) neuropathological hallmarks in 5XFAD mice, an AD animal model. METHODS The 3-week-old 5XFAD mice were exposed to 3HFWC water solution ad libitum for 3 months in the presymptomatic phase of pathology. The functional effects of the treatment were confirmed through near-infrared spectroscopy (NIRS) analysis through machine learning (ML) using artificial neural networks (ANNs) to classify the control and 3HFWC-treated brain tissue samples. The effects of 3HFWC treatment on amyloid-β (Aβ) accumulation, plaque formation, gliosis, and synaptic plasticity in cortical and hippocampal tissue were assessed. RESULTS The 3HFWC treatment significantly decreased the amyloid-β plaque load in specific parts of the cerebral cortex. At the same time, 3HFWC treatment did not induce the activation of glia (astrocytes and microglia) nor did it negatively affect synaptic protein markers (GAP-43, synaptophysin, and PSD-95). CONCLUSION The obtained results point to the potential of 3HFWC, when applied in the presymptomatic phase of AD, to interfere with amyloid plaque formation without inducing AD-related pathological processes such as neuroinflammation, gliosis, and synaptic vulnerability.
Collapse
Affiliation(s)
- Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Valentina Matovic
- NanoLab, Biomedical Engineering, Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
| | - Maja Srbovan
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | | | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
3
|
Lu WW, Xu Z, Cheng J, Zhang T, Liao XD, Wu B, Li H. A novel fullerene composite material for directional oil control and antioxidant. J Cosmet Dermatol 2024. [PMID: 38404060 DOI: 10.1111/jocd.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND There are very few cosmetic ingredients that can target oil control and extend the wear time. Fullerenes have been reported to have excellent antioxidant capacity and a variety of biological activities, such as quenching free radicals, inhibiting lipid peroxidation, and promoting lipid flocculation. OBJECTIVE The purpose of applying foundation makeup on the face is to make the skin color even, but the secretion and oxidation of skin oil will make the makeup mottled and dull. In order to solve this problem, a fullerene composite material that can directionally absorb oil and resist oil oxidation has been developed. METHODS Fullerenes and hydroxyapatite composite was prepared by high pressure homogenization under alkaline condition. The indicated morphology and structure were characterized by SEM, UV-Vis, Raman, and XRD. The oil absorption capacity was determined by adding the C60 -hydroxyapatite composite to a mixed solution of hexane and oil, shaking for 1 h, filtering, analyzed by GC-MS, and calculating the oil absorption by external standard method. Artificial sebum was prepared by adding different mass of water and oleic acid to screen the optimum ratio. C60 -hydroxyapatite mixture and C60 -hydroxyapatite composite were added to the artificial sebum to test the oil-absorbing capacity of the materials. The hydroxyl radical scavenging ability of C60 -hydroxyapatite composite containing different fullerene contents was measured by X-band ESR spectroscopy, and the long-term radical scavenging ability of the composites was tested in comparison with VC. Antioxidant experiment is adding C60 -hydroxyapatite composite material, and hydroxyapatite to oleic acid, then the UV light irradiation is aimed to accelerate the oxidation of oleic acid. Oleic acid act as a control group, and make the detection of oleic acid peroxide value after 7 days. The safety of the materials was tested by using culture media to soak the C60 -hydroxyapatite composite for 24 h and then used to culture cells. RESULTS The characterization of SEM, UV-Vis, Raman, and XRD showed that fullerene clusters were dispersed on the surface of hydroxyapatite stably, and they formed a stable composite. The adsorption rates of C60 -hydroxyapatite composites for oleic acid, phenyl trimethicone, caprylic capric glyceride, isooctyl palmitate, mineral oil, olive oil, and dimethicone were 60.5%, 9.3%, 9.15%, 5.24%, 2.94%, 1.01%, and 0%, respectively. The flocculation amount of artificial sebum was 5.9 g per gram of C60 -hydroxyapatite mixture and 24.2 g per gram of C60 -hydroxyapatite composite. C60 -hydroxyapatite composites have excellent quenching ability for hydroxyl radicals. When the fullerene content is 1, 2, 3, and 4 mg/kg, the quenching rates are 25.02%, 39.57%, 49.75%, and 62.24%, respectively. The quenching effect was enhanced with the increase of fullerene content, and it had strong long-term antioxidant properties. It can also be proved that C60 -hydroxyapatite composites have strong antioxidant capacity through antioxidant experiments. The peroxide value of oleic acid on Day 0 was 2.8, and after 7 days of UV irradiation, the peroxide values of blank control, hydroxyapatite group, C60 -hydroxyapatite composite containing 0.5% and 1% fullerenes four groups of materials were 8.02 meq O2 /kg, 7.98 meq O2 /kg, 7.11 meq O2 /kg, and 6.87 meq O2 /kg, respectively. The cell activity was 20.94% and 99.2% after the cells were cultured for 24 h using C60 -hydroxyapatite composite and hydroxyapatite extracts, respectively, and the addition of fullerene was able to significantly increase the cell activity. CONCLUSION Fullerene hydroxyapatite complex has excellent directional oil absorption characteristics, which can effectively remove free radicals and reduce skin oil oxidation.
Collapse
Affiliation(s)
- Wang Wang Lu
- Guangzhou Jiyan Cosmetics Technology Co., Ltd., Guangzhou, China
| | - Zhe Xu
- Beijing FULLCAN Biotechnology Co. Ltd., Beijing, China
| | - Jing Cheng
- Guangzhou Jiyan Cosmetics Technology Co., Ltd., Guangzhou, China
| | - Tao Zhang
- Guangzhou Jiyan Cosmetics Technology Co., Ltd., Guangzhou, China
| | - Xiao Dan Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Beijing RenShengZeFa Biotechnology Co. Ltd., Beijing, China
| |
Collapse
|
4
|
Wang D, Zhao J, Mulder RJ, Ratcliffe J, Wang C, Wu B, Wang J, Hao X. Highly aqueously stable C 60-polymer nanoparticles with excellent photodynamic property for potential cancer treatment. SMART MEDICINE 2023; 2:e20230033. [PMID: 39188299 PMCID: PMC11235996 DOI: 10.1002/smmd.20230033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 08/28/2024]
Abstract
Fullerenes are a class of carbon nanomaterials that find a wide range of applications in biomedical fields, especially for photodynamic cancer therapy because of its photosensitive effect. However, hydrophobic fullerenes can only be dispersed in organic solvents which hinders their biomedical applications. Here, we report a facile method to prepare highly water-dispersible fullerene (C60)-polymer nanoparticles with hydrodynamic sizes of 50-70 nm. Hydrophilic random copolymers containing different ratios of polyethylene glycol methyl ether methacrylate and 2-aminoethylmethacrylamide were synthesized for conjugating with C60 molecules through efficient nucleophilic Michael addition reaction between amine groups from hydrophilic polymer and carbon-carbon double bonds from C60. As a result, the amphiphilic C60-polymer conjugates could be well dispersed and nano-assembled in water with a C60 concentration as high as 7.8 mg/mL, demonstrating a significant improvement for the solubility of C60 in an aqueous system. Owing to the high C60 content, the C60-polymer nanoparticles showed a strong photodynamic therapy effect on human lung cancer cells (A549) under light irradiation (450 nm) in both 2D cell culture and 3D spheroid culture, while demonstrating ignorable cytotoxicity under dark. This highly efficient and convenient method to prepare water-dispersible C60-polymer conjugates may have a great impact on the future biomedical applications of fullerenes.
Collapse
Affiliation(s)
- Dan Wang
- Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Jianyang Zhao
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Roger J. Mulder
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Julian Ratcliffe
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Chunru Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
| | - Bo Wu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
| | - Jinquan Wang
- Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Xiaojuan Hao
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
- Joint Research Centre on MedicineThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityNingboZhejiangChina
- Zhejiang Engineering Research Centre for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
5
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
6
|
Markelić M, Mojić M, Bovan D, Jelača S, Jović Z, Purić M, Koruga D, Mijatović S, Maksimović-Ivanić D. Melanoma Cell Reprogramming and Awakening of Antitumor Immunity as a Fingerprint of Hyper-Harmonized Hydroxylated Fullerene Water Complex (3HFWC) and Hyperpolarized Light Application In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:372. [PMID: 36770334 PMCID: PMC9918970 DOI: 10.3390/nano13030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 05/14/2023]
Abstract
In our recent study, we showed that in vitro treatment of melanoma cells with hyperpolarized light (HPL) as well as with the second derivative of fullerene, hyper-harmonized hydroxylated fullerene water complex (3HFWC) reduced viability of cells by decreasing their proliferative capacity and inducing senescence and reprogramming towards a normal, melanocytic phenotype. Therefore, we wanted to determine whether these effects persisted in vivo in the syngeneic mouse melanoma model with a combined treatment of HPL irradiation and 3HFWC per os. Our results demonstrated the potent antitumor effects of 3HFWC nanosubstance assisted by HPL irradiation. These effects were primarily driven by the stimulation of melanoma cell growth arrest, the establishment of a senescent phenotype, and melanocytic differentiation on the one hand, and the awakening of the antitumor immune response on the other. In addition, the combined treatment reduced the protumorigenic activity of immune cells by depleting T regulatory cells, myeloid-derived suppressors, and M2 macrophages. The support of the 3HFWC substance by HPL irradiation may be the axis of the new approach design based on tumor cell reprogramming synchronized with the mobilization of the host's protective immune response.
Collapse
Affiliation(s)
- Milica Markelić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Mojić
- Institute for Biological Research “Siniša Stanković”– National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Dijana Bovan
- Institute for Biological Research “Siniša Stanković”– National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Jelača
- Institute for Biological Research “Siniša Stanković”– National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | | | | | | | - Sanja Mijatović
- Institute for Biological Research “Siniša Stanković”– National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research “Siniša Stanković”– National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
7
|
Subotić A, Jevremović S, Milošević S, Trifunović-Momčilov M, Đurić M, Koruga Đ. Physiological Response, Oxidative Stress Assessment and Aquaporin Genes Expression of Cherry Tomato ( Solanum lycopersicum L.) Exposed to Hyper-Harmonized Fullerene Water Complex. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212810. [PMID: 36365262 PMCID: PMC9655305 DOI: 10.3390/plants11212810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 05/30/2023]
Abstract
The rapid production and numerous applications of nanomaterials warrant the necessity and importance of examining nanoparticles in terms to their environmental and biological effects and implications. In this study, the effects of a water-soluble hyper-harmonized hydroxyl-modified fullerene (3HFWC) on cherry tomato seed germination, seedlings growth, physiological response and fruiting was evaluated. Changes in the photosynthetic pigments content, oxidative stress assessment, and aquaporin genes expression in cherry tomato plants were studied after during short- and long-term continuous exposure to 3HFWC nanosubstance (200 mg/L). Increased levels of photosynthetic pigments in leaves, lycopene in fruits, decreased levels of hydrogen peroxide content, activation of cellular antioxidant enzymes such as superoxide dismutase, catalase and peroxidase and increased aquaporin gene expression (PIP1;3, PIP1;5 and PIP2;4) were observed in 3HFWC nanosubstance-exposed plants in comparison to control, untreated cherry tomato plants. The 3HFWC nanosubstance showed positive effects on cherry tomato seed germination, plantlet growth and lycopene content in fruits and may be considered as a promising nanofertilizer.
Collapse
Affiliation(s)
- Angelina Subotić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađana Jevremović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marija Đurić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Đuro Koruga
- TFT Nano Center, Vojislava Ilića 88, 11050 Belgrade, Serbia
| |
Collapse
|
8
|
Combined Action of Hyper-Harmonized Hydroxylated Fullerene Water Complex and Hyperpolarized Light Leads to Melanoma Cell Reprogramming In Vitro. NANOMATERIALS 2022; 12:nano12081331. [PMID: 35458039 PMCID: PMC9033139 DOI: 10.3390/nano12081331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023]
Abstract
(1) Background: Their unique structure and electron deficiency have brought fullerenes into the focus of research in many fields, including medicine. The hyper-harmonized hydroxylated fullerene water complex (3HFWC) formulation has solved the limitations of the poor solubility and bioavailability of fullerenes. To achieve better antitumor activity, 3HFWC was combined with short-term irradiation of cells with hyperpolarized light (HPL) generated by the application of a nanophotonic fullerene filter in a Bioptron® device. The benefits of HPL were confirmed in the microcirculation, wound healing and immunological function. (2) Methods: B16, B16-F10 and A375 melanoma cells were exposed to a wide spectrum of 3HFWC doses and to a single short-term HPL irradiation. (3) Results: Apart from the differences in the redox status and level of invasiveness, the effects of the treatments were quite similar. Decreased viability, morphological alteration, signs of melanocytic differentiation and cellular senescence were observed upon the successful internalization of the nanoquantum substance. (4) Conclusions: Overall, 3HFWC/HPL promoted melanoma cell reprogramming toward a normal phenotype.
Collapse
|