1
|
Mena-García A, Meissner JM, Pajuelo D, Morán-Valero MI, Cristos A, Díez-Municio M, Mullor JL. Kyoh ® Rocket Leaf Extract Regulates Proliferation and VEGF and FGF7 Expression in Human Dermal Follicle Papilla Cells. Molecules 2025; 30:1489. [PMID: 40286110 PMCID: PMC11990418 DOI: 10.3390/molecules30071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Androgenetic alopecia is the most common cause of hair loss for women and men. Current treatments for androgenetic alopecia, such as those based on drugs like Minoxidil, Finasteride, or Dutasteride, have been associated with a variety of side effects, such as irritation, contact dermatitis, scalp pruritus, burning, etc. In this regard, plant extracts have emerged as promising alternatives to available chemical-based treatments for androgenetic alopecia given their efficacy, customer acceptability, and potentially minimized side effects. In this study, we evaluated the efficacy of Kyoh®, an extract from rocket leaves, as a treatment to improve the signs of androgenetic alopecia. We found that Kyoh® contained 2.1% total flavonoids, with kaempferol, quercetin, and isorhamnetin diglucosides being the most abundant. Additionally, Kyoh® showed a stimulating effect on the growth of human dermal follicle papilla cells in laboratory conditions. Most importantly, Kyoh® enhanced the gene expression of the hair growth-associated growth factors VEGF (Vascular Endothelial Growth Factor) and FGF7 (Fibroblast Growth Factor 7). Specifically, VEGF expression increased by 60.7% after 4 h and 267.3% after 24 h, while FGF7 expression increased by 50.3% after 4 h and 244.3% after 24 h, indicating both a rapid induction of gene expression and a sustained effect lasting at least one day. Moreover, Kyoh® increased the gene expression of NRF2 (Nuclear factor erythroid 2-related factor 2) by 71.2%, which encodes for a protein participating in the antioxidant response. Overall, our study shows that flavonol-rich rocket extract (Kyoh®) is a promising treatment for promoting hair growth, demonstrated by its proliferation-promoting effect, potential antioxidant priming, and induction of the expression of growth factors associated with hair growth and health.
Collapse
Affiliation(s)
- Adal Mena-García
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Justyna M. Meissner
- Bionos S.L., Biopolo La Fe, Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (D.P.); (J.L.M.)
| | - David Pajuelo
- Bionos S.L., Biopolo La Fe, Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (D.P.); (J.L.M.)
| | - María Inés Morán-Valero
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Ana Cristos
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Marina Díez-Municio
- Pharmactive Biotech Products S.L.U., Faraday 7, 28049 Madrid, Spain; (M.I.M.-V.); (A.C.); (M.D.-M.)
| | - Jose Luis Mullor
- Bionos S.L., Biopolo La Fe, Hospital La Fe, 46026 Valencia, Spain; (J.M.M.); (D.P.); (J.L.M.)
| |
Collapse
|
2
|
Choi JY, Boo MY, Boo YC. Can Plant Extracts Help Prevent Hair Loss or Promote Hair Growth? A Review Comparing Their Therapeutic Efficacies, Phytochemical Components, and Modulatory Targets. Molecules 2024; 29:2288. [PMID: 38792149 PMCID: PMC11124163 DOI: 10.3390/molecules29102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-β or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Min Young Boo
- Ppeum Clinic Daegu, 39 Dongseong-ro, Jung-gu, Daegu 41937, Republic of Korea;
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Lapivu Co., Ltd., 115 Dongdeok-ro, Jung-gu, Daegu 41940, Republic of Korea
| |
Collapse
|
3
|
Wang W, Wang H, Long Y, Li Z, Li J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023; 14:20. [PMID: 38254620 PMCID: PMC10813359 DOI: 10.3390/biom14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Apoptosis is a physiological process that occurs in all cell types of the human body, and it profoundly changes the fate of hair by affecting hair follicle cells. This review outlines the cellular changes, intrinsic biochemical characteristics, and mechanisms underlying apoptosis and summarizes the hair follicle life cycle, including development, cycle stages, and corresponding cellular changes. Finally, the relationship between apoptosis and the hair cycle is discussed and the significance of apoptosis in hair loss conditions and drug treatments is highlighted. Apoptosis induces cellular changes and exhibits distinctive properties through intricate signaling pathways. Hair follicles undergo cyclic periods of growth, regression, and dormancy. Apoptosis is closely correlated with the regression phase by triggering hair follicle cell death and shedding. Regulation of apoptosis in hair follicles plays an essential role in hair loss due to maladies and drug treatments. Mitigating apoptosis can enhance hair growth and minimize hair loss. A comprehensive understanding of the correlation between apoptosis and the hair cycle can facilitate the development of novel treatments to prevent hair loss and stimulate hair regeneration.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
4
|
Albalawi MA, Hafez AM, Elhawary SS, Sedky NK, Hassan OF, Bakeer RM, El Hadi SA, El-Desoky AH, Mahgoub S, Mokhtar FA. The medicinal activity of lyophilized aqueous seed extract of Lepidium sativum L. in an androgenic alopecia model. Sci Rep 2023; 13:7676. [PMID: 37169776 PMCID: PMC10175567 DOI: 10.1038/s41598-023-33988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
This study evaluated the topical effect of Lepidium sativum lyophilized seed extract (LSLE) towards Sustanon-induced alopecia in male adult Wistar albino rats in vivo, compared to minoxidil topical reference standard drug (MRD). LC-MS/MS together with molecular networking was used to profile the metabolites of LSLE. LSLE treated group revealed significant changes in alopecia related biomarkers, perturbation of androgenic markers; decline in testosterone level and elevation in 5α-reductase (5-AR); decline in the cholesterol level. On the other hand, LSLE treated group showed improvement in vascular markers; CTGF, FGF and VEGF. Groups treated topically with minoxidil and LSLE showed significant improvement in hair length. LC-MS/MS profile of LSLE tentatively identified 17 constituents: mainly glucosinolates, flavonoid glycosides, alkaloids and phenolic acids. The results point to the potential role of LSLE in the treatment of alopecia through decreasing 5(alpha)-dihydrotestosterone levels. Molecular docking was attempted to evaluate the probable binding mode of identified compounds to androgen receptor (PDB code: 4K7A).
Collapse
Affiliation(s)
| | - Ahmed M Hafez
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Seham S Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Omnia F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MSA University, 6th of October City, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Soha Abd El Hadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt.
| | - Ahmed H El-Desoky
- Department of Pharmacognosy, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza, 112611, Egypt
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sia, 44813, Egypt
| |
Collapse
|
5
|
Pisanti S, Mencherini T, Esposito T, D'Amato V, Re T, Bifulco M, Aquino RP. The medieval skincare routine according to the formulations of Madgistra Trotula and the Medical School of Salerno and its reflection on cosmetology of the third millennium. J Cosmet Dermatol 2023; 22:542-554. [PMID: 35822229 PMCID: PMC10087853 DOI: 10.1111/jocd.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Officinal plants, minerals, animal derivatives, and miscellaneous have always been used to treat and improve appearance despite the different aesthetic canons of a specific historical and cultural context. OBJECTIVE The aim of this work was to make a critical comparison between medieval and modern dermocosmetics analyzing the works of Trotula de Ruggiero, a female doctor of the 11th century teaching and working inside the illustrious "Medical School of Salerno," who devoted particular attention to the promotion of female care, beauty, and well-being. METHODS We applied the historical-critical method analyzing the Latin text and the nglish translation of the standardized corpus of the main Trotula medieval manuscript De Ornatu Mulierum with a multidisciplinary scientific approach ranging from botany to pharmaceutical chemistry and technology, pharmacology and pathology. RESULTS We identified the medicinal plants, derivatives of animal origin and minerals used in the recipes of Trotula, highlighting their biological properties in the light of current scientific knowledge. A critical comparison between medieval and modern dermocosmetics is reported also taking into consideration the chemical, pharmaceutical, and technological literature. CONCLUSION Beyond the obvious changes in the paradigms of cosmetology and the different beauty canons of Middle Age with respect to modern times, our results emphasize the attention of Trotula to female care, beauty and well-being as well as the extraordinary combination of tradition and modernity in her work.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy.,UNESCO Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, Fisciano, Italy
| | - Teresa Mencherini
- UNESCO Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, Fisciano, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Tiziana Esposito
- UNESCO Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, Fisciano, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Valeria D'Amato
- UNESCO Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, Fisciano, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Tania Re
- UNESCO Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, Fisciano, Italy.,UNESCO Chair "Health Anthropology, Biosphere and Healing systems" University of Genoa, Genoa, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rita P Aquino
- UNESCO Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, Fisciano, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|