1
|
Yong TL, Zaman R, Rehman N, Tan CK. Ceramides and Skin Health: New Insights. Exp Dermatol 2025; 34:e70042. [PMID: 39912256 DOI: 10.1111/exd.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Ceramide has transitioned from an incidental discovery to a vital element in skincare, becoming a thoroughly studied compound in the quest to treat skin conditions. Creating a moisture barrier, preserving hydration, regulating pH, controlling inflammation, and enhancing skin functions and appearance are among its established benefits. It is often used medically to repair skin barrier defects, as observed in inflammatory skin conditions like atopic dermatitis (AD) and dry skin types. Furthermore, ceramide and its metabolites are commonly used as predictors before disease manifestation and for prognostication processes, thus can be used as biomarker for clinical diagnosis as well. In the last couple of decades, momentum was also seen in the pre-clinical studies involving anti-cancer and nanotechnology field, whereby ceramide was also used as a drug, a carrier, or even adjunct formulation to increase efficacy of treatment such as chemotherapy. Approaches to increase ceramide levels include directly replenishing lost ceramides with natural extracts, synthetic pseudo-ceramides, or ceramide-like analogues, as well as using supplements that stimulate the body's natural ceramide production. Although ceramide is a well-known treatment in skincare and for common skin conditions like AD and psoriasis, its development and related pharmacology for severe skin conditions, such as skin cancer, remain in pre-clinical stages. Hence, the purpose of this research is to explore the role of ceramide in skin health and its application in common skin diseases.
Collapse
Affiliation(s)
- Tze Lek Yong
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Rahela Zaman
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - Chung Keat Tan
- School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Grześk-Kaczyńska M, Petrus-Halicka J, Kaczyński S, Bartuzi Z, Ukleja-Sokołowska N. Should Emollients Be Recommended for the Prevention of Atopic Dermatitis?-New Evidence and Current State of Knowledge. J Clin Med 2024; 13:863. [PMID: 38337555 PMCID: PMC10856443 DOI: 10.3390/jcm13030863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic, pruritic skin disease with complex pathogenesis, which affects about 43 million children aged 1-4 years. One of the most known methods of alleviating symptoms of AD is emollient treatment, which varies depending on formulation and additional active ingredients. There is some evidence that emollients could be used in AD prevention in high-risk children. MATERIALS AND METHODS A search of the literature from Cochrane Library, PubMed and Medline was conducted between August and September 2023 with the following keywords: "atopic dermatitis", "emollients", and "prevention". Only randomised clinical trials published in the last 5 years were included into the meta-analysis. RESULTS Considering the inclusion criteria only 11 randomized clinical trials were taken into account, and six of them proved lack of effect of emollients in the prevention of atopic dermatitis among neonates from AD risk groups. CONCLUSIONS Emollient treatment has a good safety profile and most of the ingredients used in formulations are nonirritant for sensitive newborn and infant skin. There is some evidence of the positive effects of emollient treatment in prevention of AD in predisposed populations. The relatively high cost of emollient treatment (vs regular infant skin-care routine) would support the necessity for further evaluation of their effectiveness in nonpredisposed populations.
Collapse
Affiliation(s)
- Magdalena Grześk-Kaczyńska
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| | - Justyna Petrus-Halicka
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| | - Szymon Kaczyński
- Department of Obstetrics, Gynecology and Gynecological Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Zbigniew Bartuzi
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| | - Natalia Ukleja-Sokołowska
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| |
Collapse
|
3
|
Chen YH, Zhu Q, Li J, Yang R, Zhang J, You M, Luo L, Yang B. Optimization of Fermentation Process for New Anti-Inflammatory Glycosylceramide Metabolite from Aspergillus sp. Metabolites 2024; 14:99. [PMID: 38392991 PMCID: PMC10890386 DOI: 10.3390/metabo14020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
A novel ceramide compound, named Aspercerebroside A (AcA), was successfully isolated from the ethyl acetate layer of the marine symbiotic fungus Aspergillus sp. AcA exhibited notable anti-inflammatory activity by effectively inhibiting the production of nitric oxide (NO) in RAW 264.7 cells at concentrations of 30 μg/mL and 40 μg/mL, offering a promising avenue for the treatment of inflammatory diseases. To optimize the yield of glycosylceramide (AcA), a series of techniques, including single-factor experiments, orthogonal experiments, and response surface optimization, were systematically employed to fine-tune the composition of the fermentation medium. Initially, the optimal carbon source (sucrose), nitrogen source (yeast extract powder), and the most suitable medium salinity (14 ppt) were identified through single-factor experiments. Subsequently, orthogonal experiments, employing an orthogonal table for planning and analyzing multifactor experiments, were conducted. Finally, a mathematical model, established using a Box-Behnken design, comprehensively analyzed the interactions between the various factors to determine the optimal composition of the fermentation medium. According to the model's prediction, when the sucrose concentration was set at 37.47 g/L, yeast extract powder concentration at 19.66 g/L, and medium salinity at 13.31 ppt, the predicted concentration of glycosylceramide was 171.084 μg/mL. The experimental results confirmed the model's accuracy, with the actual average concentration of glycosylceramide under these conditions measured at 171.670 μg/mL, aligning closely with the predicted value.
Collapse
Affiliation(s)
- Yung-Husan Chen
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Qiaoqiao Zhu
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Jingyi Li
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Rong Yang
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Jingwen Zhang
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Minxin You
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Lianzhong Luo
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Bingye Yang
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
4
|
Nunomura S, Uta D, Kitajima I, Nanri Y, Matsuda K, Ejiri N, Kitajima M, Ikemitsu H, Koga M, Yamamoto S, Honda Y, Takedomi H, Andoh T, Conway SJ, Izuhara K. Periostin activates distinct modules of inflammation and itching downstream of the type 2 inflammation pathway. Cell Rep 2023; 42:111933. [PMID: 36610396 PMCID: PMC11486451 DOI: 10.1016/j.celrep.2022.111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing skin disease accompanied by recurrent itching. Although type 2 inflammation is dominant in allergic skin inflammation, it is not fully understood how non-type 2 inflammation co-exists with type 2 inflammation or how type 2 inflammation causes itching. We have recently established the FADS mouse, a mouse model of AD. In FADS mice, either genetic disruption or pharmacological inhibition of periostin, a downstream molecule of type 2 inflammation, inhibits NF-κB activation in keratinocytes, leading to downregulating eczema, epidermal hyperplasia, and infiltration of neutrophils, without regulating the enhanced type 2 inflammation. Moreover, inhibition of periostin blocks spontaneous firing of superficial dorsal horn neurons followed by a decrease in scratching behaviors due to itching. Taken together, periostin links NF-κB-mediated inflammation with type 2 inflammation and promotes itching in allergic skin inflammation, suggesting that periostin is a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Kosuke Matsuda
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoko Ejiri
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Midori Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Hitoshi Ikemitsu
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Misaki Koga
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Sayaka Yamamoto
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Hironobu Takedomi
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tsugunobu Andoh
- Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
5
|
Moisturizer in Patients with Inflammatory Skin Diseases. Medicina (B Aires) 2022; 58:medicina58070888. [PMID: 35888607 PMCID: PMC9315586 DOI: 10.3390/medicina58070888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
As interest in skin increases, the cosmetic market is also growing. It is difficult to choose between the numerous types of basic cosmetics on the market. This article aims to provide advice and guidance on which products to recommend according to a patient’s skin condition. Appropriate application of a moisturizer attempts not only to improve the dryness, but also improve the skin’s natural barrier function to protect the skin from internal and external irritants to keep the skin healthy. Moisturizers consist of various ingredients, including occlusive agents, emollients, humectants, lipid mixture, emulsifiers, and preservatives. Pathophysiology of dry skin is also discussed to provide readers with the background they need to choose the right moisturizer for themselves. As moisturizers play an important role as adjuvant in the treatment of common skin diseases, such as atopic dermatitis, contact dermatitis, psoriasis, acne and rosacea, which type of moisturizer is appropriate for each disease was also dealt with. Basic cosmetics, especially moisturizers, should be recommended in consideration of the ingredients, effectiveness and safety of each product, and the skin condition of each patient.
Collapse
|