1
|
Kong C, Hu L, Zhang L, Cheng H, Lu Q, Li A, Ke B, Cui W, Zhang H, Wu M, Zhu Q, Jin C, Yu L. Association of Pretreatment Serum Indirect Bilirubin Levels With Prognostic and Therapeutic Value in Patients With Newly Diagnosed Acute Myeloid Leukemia. Cancer Med 2025; 14:e70572. [PMID: 39868887 PMCID: PMC11770887 DOI: 10.1002/cam4.70572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Bilirubin has anti-inflammatory, antioxidant, and anti-cancer properties, with an inverse relationship between its levels and cancer risk and prognosis. However, the prognostic value of serum bilirubin in acute myeloid leukemia (AML) remains uncertain. METHODS This retrospective study analyzed pretreatment serum total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL) in 284 AML patients and 316 healthy controls. The prognostic significance of serum bilirubin levels was determined using the Kaplan-Meier method and Cox proportional hazards model. RESULTS Pretreatment TBIL and IBIL levels were significantly lower in AML patients compared to controls. TBIL and IBIL levels were significantly higher in the CR/CRh/CRi group than in the non-CR/CRh/CRi group and increased significantly after chemotherapy. Elevated pretreatment TBIL and IBIL were associated with longer overall survival (OS) (p < 0.05) and progression-free survival (PFS) (p < 0.05). Pretreatment IBIL was an independent prognostic factor for OS (hazard ratio [HR], 0.47; 95% confidence interval [CI] 0.28-0.79; p < 0.05) and PFS (HR, 0.53; 95% CI 0.33-0.85; p < 0.05). CONCLUSION Elevated pretreatment IBIL levels are correlated with improved OS and PFS, acting as an independent favorable prognostic indicator for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/diagnosis
- Bilirubin/blood
- Female
- Male
- Middle Aged
- Retrospective Studies
- Adult
- Prognosis
- Aged
- Young Adult
- Adolescent
- Biomarkers, Tumor/blood
- Kaplan-Meier Estimate
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aged, 80 and over
- Case-Control Studies
Collapse
Affiliation(s)
- Chunfang Kong
- Department of HematologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Linhui Hu
- Department of HematologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Ling Zhang
- Department of HematologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Hongbo Cheng
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Qilin Lu
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Anna Li
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Bo Ke
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Wenting Cui
- Department of HematologyThe First People's Hospital of Jiujiang CityJiujiangJiangxiChina
| | - Huixia Zhang
- Department of HematologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Mei Wu
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Qingqing Zhu
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Chenghao Jin
- Department of HematologyJiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversityNanjingChina
| | - Li Yu
- Department of HematologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- Jiangxi Provincial Key Laboratory of Hematological DiseasesNanchangJiangxiChina
| |
Collapse
|
2
|
Gu D, Pan R, Meng X, Liu T, Zhong H, Chen N, Xu Y. What lies behind melasma: a review of the related skin microenvironment. Int J Dermatol 2025; 64:256-265. [PMID: 39212112 DOI: 10.1111/ijd.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Melasma is an acquired chronic pigmentary disorder affecting millions of individuals worldwide. However, the pathogenesis of melasma remains unclear. This article provides a comprehensive review of the pathophysiological changes occurring in the skin microenvironment of melasma lesions, which can be summarized as follows: (1) skin barrier dysfunction and abnormal synthesis, transport, and intracellular distribution of melanin in the epidermis; (2) basement membrane damage; (3) solar elastosis, vascular changes, senescent fibroblasts, mast cell infiltration, and sebocyte participation in the dermis; and (4) systemic factors such as sex hormones and oxidative stress. Furthermore, potential therapeutic strategies are introduced to provide novel perspectives for fundamental and clinical research related to melasma.
Collapse
Affiliation(s)
- Duoduo Gu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ruoxin Pan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoqi Meng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tingwei Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Nuoran Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Xu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Ciaglia T, Miranda MR, Di Micco S, Vietri M, Smaldone G, Musella S, Di Sarno V, Auriemma G, Sardo C, Moltedo O, Pepe G, Bifulco G, Ostacolo C, Campiglia P, Manfra M, Vestuto V, Bertamino A. Neuroprotective Potential of Indole-Based Compounds: A Biochemical Study on Antioxidant Properties and Amyloid Disaggregation in Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:1585. [PMID: 39765912 PMCID: PMC11673510 DOI: 10.3390/antiox13121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states. Further analysis using thioflavin T fluorescence assays, circular dichroism, and computational studies indicated that the synthesized derivatives effectively promoted the self-disaggregation of the Aβ(25-35) fragment. Taken together, these findings suggest a unique profile of neuroprotective actions for indole-phenolic derivatives, combining chelating, antioxidant, and anti-aggregation properties, which position them as promising compounds for the development of multifunctional agents in Alzheimer's disease therapy. The methods used provide reliable in vitro data, although further in vivo validation and assessment of blood-brain barrier penetration are needed to confirm therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy;
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (T.C.); (M.R.M.); (M.V.); (G.S.); (S.M.); (V.D.S.); (G.A.); (C.S.); (O.M.); (G.P.); (G.B.); (C.O.); (P.C.); (A.B.)
| |
Collapse
|
4
|
Lv XL, Yue YX, Jia BB, Weng YZ, Lu Y, Yang ZX. Bilirubin influences the predictive effect of body mass index on hospital mortality in critically ill patients. Heliyon 2024; 10:e32089. [PMID: 38882368 PMCID: PMC11176823 DOI: 10.1016/j.heliyon.2024.e32089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Body mass index (BMI) can predict mortality in critically ill patients. Moreover, mortality is related to increased bilirubin levels. Thus, herein, we aimed to investigate the effect of bilirubin levels on the usefulness of BMI in predicting mortality in critically ill patients. Methods Data were extracted from the Medical Information Mart for Intensive Care (MIMIC IV) database. Patients were divided into two groups according to their total bilirubin levels within 24 h. Cox proportional hazard regression models were applied to obtain adjusted hazard ratios and 95 % confidence intervals for the correlation between BMI categories and hospital mortality. The dose-response relationship was flexibly modeled using a restricted cubic spline (RCS) with three knots. Results Of the 14376 patients included, 3.4 % were underweight, 29.3 % were of normal body weight, 32.2 % were overweight, and 35.1 % were obese. For patients with total bilirubin levels <2 mg/dL, hospital mortality was significantly lower in patients with obesity than in normal body weight patients (p < 0.05). However, the opposite results were observed for patients with total bilirubin levels ≥2 mg/dL. The Cox proportional hazard regression models suggested that the risk of death was lower in patients with overweightness and obesity than in normal body weight patients when the total bilirubin levels were <2 mg/dL, but not in the other case (total bilirubin levels ≥2 mg/dL). RCS analyses showed that, for patients with total bilirubin levels <2 mg/dL, the risk of death gradually decreased with increasing BMI. Conversely, for patients with total bilirubin levels ≥2 mg/dL, this risk did not decrease with increasing BMI until reaching obesity, after which it increased rapidly. Conclusion BMI predicted the risk of death differently in critically ill patients with different bilirubin levels.
Collapse
Affiliation(s)
- Xiao-Ling Lv
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying-Xing Yue
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Bing-Bing Jia
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying-Zheng Weng
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Yan Lu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Zhou-Xin Yang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| |
Collapse
|
5
|
Zhao X, Duan B, Wu J, Huang L, Dai S, Ding J, Sun M, Lin X, Jiang Y, Sun T, Lu R, Huang H, Lin G, Chen R, Yao Q, Kou L. Bilirubin ameliorates osteoarthritis via activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. J Cell Mol Med 2024; 28:e18173. [PMID: 38494841 PMCID: PMC10945086 DOI: 10.1111/jcmm.18173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that affects worldwide. Oxidative stress plays a critical role in the chronic inflammation and OA progression. Scavenging overproduced reactive oxygen species (ROS) could be rational strategy for OA treatment. Bilirubin (BR) is a potent endogenous antioxidant that can scavenge various ROS and also exhibit anti-inflammatory effects. However, whether BR could exert protection on chondrocytes for OA treatment has not yet been elucidated. Here, chondrocytes were exposed to hydrogen peroxide with or without BR treatment. The cell viability was assessed, and the intracellular ROS, inflammation cytokines were monitored to indicate the state of chondrocytes. In addition, BR was also tested on LPS-treated Raw264.7 cells to test the anti-inflammation property. An in vitro bimimic OA microenvironment was constructed by LPS-treated Raw264.7 and chondrocytes, and BR also exert certain protection for chondrocytes by activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. An ACLT-induced OA model was constructed to test the in vivo therapeutic efficacy of BR. Compared to the clinical used HA, BR significantly reduced cartilage degeneration and delayed OA progression. Overall, our data shows that BR has a protective effect on chondrocytes and can delay OA progression caused by oxidative stress.
Collapse
Affiliation(s)
- Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Baiqun Duan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Sheng Dai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Jie Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Xinlu Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruijie Lu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyWenzhouChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Zhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhouChina
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyWenzhouChina
- Zhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhouChina
| |
Collapse
|
6
|
Rahimi H, Mirnezami M, Yazdabadi A, Hajihashemi A. Evaluation of systemic oxidative stress in patients with melasma. J Cosmet Dermatol 2024; 23:284-288. [PMID: 37461812 DOI: 10.1111/jocd.15924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 01/02/2024]
Abstract
BACKGROUND The significance of oxidative stress has been assessed and proven in the etiopathogenesis of many cutaneous disorders, but there are few studies that evaluated the role of only some factors involved in oxidative stress in patients with melasma. OBJECTIVE This study aimed to examine the role of oxidative stress in melasma and assess the relationship between systemic oxidative stress and the severity and extension of this disease. METHODS In this study, the serum levels of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PC), selenium (Se), vitamin E (vit E), and vitamin C (vit C) of fifty patients with melasma were compared with those of fifty controls. RESULTS The serum level of MDA was significantly higher in the melasma group (3.08 vs. 2.35 U/mL; p < 0.05), and it was positively correlated with the severity (r = 0.4; p < 0.001) and extension (r = 0.3; p < 0.05) of the disease. Furthermore, the serum level of vit C was significantly lower in melasma patients (2.16 vs. 2.57 μg/mL; p < 0.001). CONCLUSION Systemic oxidative stress has a key role in the etiopathogenesis of melasma. Serum concentrations of MDA and vitamin C are indicators of this impairment.
Collapse
Affiliation(s)
- Hoda Rahimi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Mirnezami
- Department of Dermatology, Arak University of Medical Sciences, Arak, Iran
| | - Anousha Yazdabadi
- Department of Dermatology, Eastern Health, Box Hill, Victoria, Australia
- Monash University, Eastern Health, Box Hill, Victoria, Australia
- Department of Medical Education, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
7
|
Liu W, Chen Q, Xia Y. New Mechanistic Insights of Melasma. Clin Cosmet Investig Dermatol 2023; 16:429-442. [PMID: 36817641 PMCID: PMC9936885 DOI: 10.2147/ccid.s396272] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
Melasma is a common acquired disorder of pigmentation that negatively impacts quality of life. Present treatments show poor therapeutic effect with frequent recurrence. This in large part is due to the currently limited understanding of the disease's etiology. It is urgent to elucidate the pathogenesis of melasma to further the discovery of new therapeutic strategies. Recent studies show that melasma is triggered or aggravated by a variety of factors, including genetic susceptibility, ultraviolet radiation, and sex hormone dysregulation. Ultraviolet B radiation upregulates the expression of several melanocyte-specific genes and stimulates the release of key factors that participate in the synthesis of melanin. There is a significant increase in melanin in both the epidermal and dermal layers of affected skin, possibly due to abnormalities in crosstalk between the melanocytes and other cells. Melanogenesis is regulated through various signaling networks including the Wnt/β-catenin, PI3K/Akt, cAMP/PKA, and SCF/c-kit-mediated signaling pathways. In addition, inflammatory mediators, oxidative stress, neuroactive molecules, sebocytes, etc, have also been proved to be related to the pathogenesis of melasma. This review provides a comprehensive update on the current understanding of the pathogenesis of melasma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel +86 29 87679969, Fax +86 29 87678425, Email
| |
Collapse
|
8
|
Espósito ACC, D Elia MPB, Cassiano D, Miot HA. Concerning the characterization of systemic oxidative stress in epidemiological studies of melasma: Comments on "Bilirubin as a new antioxidant in melasma". J Cosmet Dermatol 2022; 21:6521-6522. [PMID: 35980672 DOI: 10.1111/jocd.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Daniel Cassiano
- Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Hélio Amante Miot
- Departamento de Dermatologia e Radioterapia, FMB-Unesp, Botucatu, SP, Brazil
| |
Collapse
|