1
|
Peng Y, Kajiyama H, Yuan H, Nakamura K, Yoshihara M, Yokoi A, Fujikake K, Yasui H, Yoshikawa N, Suzuki S, Senga T, Shibata K, Kikkawa F. PAI-1 secreted from metastatic ovarian cancer cells triggers the tumor-promoting role of the mesothelium in a feedback loop to accelerate peritoneal dissemination. Cancer Lett 2018; 442:181-192. [PMID: 30429105 DOI: 10.1016/j.canlet.2018.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
The mesothelium, covered by a continuous monolayer of mesothelial cells, is the first protective barrier against metastatic ovarian cancer. However, mesothelial cells release tumor-promoting factors that accelerate the process of peritoneal metastasis. We identified cancer-associated mesothelial cells (CAMs) that had tumor-promoting potential. Here, we found that plasminogen activator inhibitor-1 (PAI-1) induced the formation of CAMs, after which CAMs increasingly secreted the oncogenic factors interleukin-8 (IL-8) and C-X-C motif chemokine ligand 5 (CXCL5), further promoting the metastasis of ovarian cancer cells in a feedback loop. After the formation of CAMs, PAI-1 activated the nuclear factor kappa B (NFκB) pathway in the CAMs, thus transcriptionally upregulating the expression of the downstream NFκB targets IL-8 and CXCL5. Moreover, PAI-1 correlated with peritoneal metastasis in ovarian cancer patients and indicated a poor prognosis. In both ex vivo and in vivo models, after PAI-1 expression was knocked down, the metastasis of ovarian cancer cells decreased significantly. Therefore, targeting PAI-1 may provide a potential target for future therapeutics to prevent the formation of CAMs and alleviate peritoneal metastasis in ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Peng
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hong Yuan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Kayo Fujikake
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Yasui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| | - Takeshi Senga
- Department of Internal Medicine, Yahagigawa Hospital, Anjyo, 444-1164, Aichi, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Banbuntane Hotokukai Hospital, Fujita Health University, Nakagawa-ku, Nagoya, 454-8509, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother 2018; 105:83-94. [PMID: 29852393 DOI: 10.1016/j.biopha.2018.05.119] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
[Despite as a major inhibitor of urokinase (uPA), paradoxically,] Plasminogen activator inhibitor-1 (PAI-1) has been validated to be highly expressed in various types of tumor biopsy tissues or plasma compared with controls based on huge clinical data bases analysis, more importantly, PAI-1 alone or in conjunction with uPA have been identified as prognostic for disease progression and relapse in certain cancer types. particularly in breast cancer. In addition to play important roles in cell adhesion, migration and invasion, PAI-1 has been reported to induce tumor vascularization and thus promote cell dissemination and tumor metastasis. Furthermore, there are many tumor promoting factors involved in the modulation of PAI-1 expression and activity, which will strengthen the pro-tumorigenic roles of PAI-1. Undoubtedly, PAI-1 may be a promising target for therapeutic intervention of specific cancer treatment. In fact, some PAI-1 inhibitors are currently being evaluated in cancer therapy, which may be developed to new antitumor agents in the future.
Collapse
|