1
|
Nordkap L, Almstrup K, Priskorn L, Bang AK, Stalder T, Petersen JH, Hansen ÅM, Juul A, Johannsen TH, Jørgensen N. Hair cortisol, glucocorticoid gene receptor polymorphisms, stress, and testicular function. Psychoneuroendocrinology 2022; 146:105942. [PMID: 36179533 DOI: 10.1016/j.psyneuen.2022.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Self-reported psychological stress has been associated with decreased semen quality. Cortisol levels in scalp hair (hair cortisol concentration, HCC) has emerged as a potential objective marker of psychological stress. Thus, we investigated if HCC was associated with markers of testicular function. Furthermore, we examined whether three common single nucleotide polymorphisms in the glucocorticoid-receptor gene (NR3C1, chromosome 5), potentially affecting receptor sensitivity, were associated with HCC and could influence the studied association between HCC and testicular function. DESIGN Cross-sectional study. METHODS We analysed HCC, serum-levels of reproductive hormones, semen parameters, and the three NR3C1-polymorphisms; BclI (rs41423247), Tth111I (rs10052957), and 9β (rs6198), in a population of 696 men from the general population. RESULTS HCC was not associated with testicular function, and adjustment for the three NR3C1-polymorphisms did not alter the results. However, HCC increased significantly with the number of Tth111I minor-alleles (T) and decreased significantly with the number of 9β minor-alleles (G). CONCLUSION Given previously shown associations between stress and semen quality, and that no association between HCC and self-reported stress was observed in the current study, we speculate that negative reproductive effects of stress may not be mediated directly by cortisol. This study demonstrates associations between HCC and glucocorticoid receptor gene variants indicating that these SNPs may influence systemic glucocorticoid levels, but the potential health effects of such alterations are yet unknown.
Collapse
Affiliation(s)
- Loa Nordkap
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark.
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Priskorn
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | - Anne Kirstine Bang
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | - Tobias Stalder
- Department of Clinical Psychology, University of Siegen, Siegen, Germany
| | - Jørgen Holm Petersen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark; Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Åse Marie Hansen
- Department of Public Health, University of Copenhagen, Denmark; National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trine Holm Johannsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| |
Collapse
|
2
|
Stepanov YK, Speidel JD, Herrmann C, Schmid N, Behr R, Köhn FM, Stöckl JB, Pickl U, Trottmann M, Fröhlich T, Mayerhofer A, Welter H. Profound Effects of Dexamethasone on the Immunological State, Synthesis and Secretion Capacity of Human Testicular Peritubular Cells. Cells 2022; 11:cells11193164. [PMID: 36231125 PMCID: PMC9562650 DOI: 10.3390/cells11193164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
The functions of human testicular peritubular cells (HTPCs), forming a small compartment located between the seminiferous epithelium and the interstitial areas of the testis, are not fully known but go beyond intratesticular sperm transport and include immunological roles. The expression of the glucocorticoid receptor (GR) indicates that they may be regulated by glucocorticoids (GCs). Herein, we studied the consequences of the GC dexamethasone (Dex) in cultured HTPCs, which serves as a unique window into the human testis. We examined changes in cytokines, mainly by qPCR and ELISA. A holistic mass-spectrometry-based proteome analysis of cellular and secreted proteins was also performed. Dex, used in a therapeutic concentration, decreased the transcript level of proinflammatory cytokines, e.g., IL6, IL8 and MCP1. An siRNA-mediated knockdown of GR reduced the actions on IL6. Changes in IL6 were confirmed by ELISA measurements. Of note, Dex also lowered GR levels. The proteomic results revealed strong responses after 24 h (31 significantly altered cellular proteins) and more pronounced ones after 72 h of Dex exposure (30 less abundant and 42 more abundant cellular proteins). Dex also altered the composition of the secretome (33 proteins decreased, 13 increased) after 72 h. Among the regulated proteins were extracellular matrix (ECM) and basement membrane components (e.g., FBLN2, COL1A2 and COL3A1), as well as PTX3 and StAR. These results pinpoint novel, profound effects of Dex in HTPCs. If transferrable to the human testis, changes specifically in ECM and the immunological state of the testis may occur in men upon treatment with Dex for medical reasons.
Collapse
Affiliation(s)
| | - Jan Dominik Speidel
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Carola Herrmann
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Nina Schmid
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | | | | | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| | - Harald Welter
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| |
Collapse
|
3
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
The Glucocorticoid Receptor NR3C1 in Testicular Peritubular Cells is Developmentally Regulated and Linked to the Smooth Muscle-Like Cellular Phenotype. J Clin Med 2020; 9:jcm9040961. [PMID: 32244354 PMCID: PMC7230580 DOI: 10.3390/jcm9040961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Whether glucocorticoids (GC) can directly affect human testicular functions is not well understood. A predominant site of GC receptor (GR; NR3C1) expression in the adult testis are peritubular smooth muscle-like cells, which express smooth muscle actin (ACTA2), contract and thereby are involved in sperm transport. In contrast to the adult, neither GR nor ACTA2, or elastin (ELN) were detected in the peritubular compartment before puberty in non-human primate testes. In isolated human testicular peritubular cells (HTPCs), activation of GR by dexamethasone (Dex) caused the translocation of GR to the nucleus and stimulated expression of ACTA2 and ELN, without affecting the expression of collagens. Cytoskeletal ACTA2-rearrangements were observed and were associated with an increased ability to contract. Our results indicate post-pubertal testicular roles of GC in the maintenance of the contractile, smooth muscle-like phenotype of peritubular cells.
Collapse
|
5
|
Cerván-Martín M, Castilla JA, Palomino-Morales RJ, Carmona FD. Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. J Clin Med 2020; 9:jcm9020300. [PMID: 31973052 PMCID: PMC7074441 DOI: 10.3390/jcm9020300] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonobstructive azoospermia (NOA) represents the most severe expression of male infertility, involving around 1% of the male population and 10% of infertile men. This condition is characterised by the inability of the testis to produce sperm cells, and it is considered to have an important genetic component. During the last two decades, different genetic anomalies, including microdeletions of the Y chromosome, karyotype defects, and missense mutations in genes involved in the reproductive function, have been described as the primary cause of NOA in many infertile men. However, these alterations only explain around 25% of azoospermic cases, with the remaining patients showing an idiopathic origin. Recent studies clearly suggest that the so-called idiopathic NOA has a complex aetiology with a polygenic inheritance, which may alter the spermatogenic process. Although we are far from a complete understanding of the molecular mechanisms underlying NOA, the use of the new technologies for genetic analysis has enabled a considerable increase in knowledge during the last years. In this review, we will provide a comprehensive and updated overview of the genetic basis of NOA, with a special focus on the possible application of the recent insights in clinical practice.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, Calle Maestro Bretón 1, 18004 Granada, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Facultad de Ciencias, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Correspondence: ; Tel.: +34-958-241-000 (ext 20170)
| |
Collapse
|
6
|
Nordkap L, Almstrup K, Nielsen JE, Bang AK, Priskorn L, Krause M, Holmboe SA, Winge SB, Egeberg Palme DL, Mørup N, Petersen JH, Juul A, Skakkebaek NE, Rajpert-De Meyts E, Jørgensen N. Possible involvement of the glucocorticoid receptor (NR3C1) and selected NR3C1
gene variants in regulation of human testicular function. Andrology 2017; 5:1105-1114. [DOI: 10.1111/andr.12418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- L. Nordkap
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - K. Almstrup
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - J. E. Nielsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - A. K. Bang
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - L. Priskorn
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - M. Krause
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - S. A. Holmboe
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - S. B. Winge
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - D. L. Egeberg Palme
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - N. Mørup
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - J. H. Petersen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
- Department of Biostatistics; University of Copenhagen; Copenhagen Denmark
| | - A. Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - N. E. Skakkebaek
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - E. Rajpert-De Meyts
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| | - N. Jørgensen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC); Rigshospitalet; University of Copenhagen; Copenhagen Ø Denmark
| |
Collapse
|