1
|
Xu J, Shao R, Zhang X, Yao D, Han S. Serum cell division cycle 42 in advanced hepatocellular carcinoma patients: Linkage with clinical characteristics and immune checkpoint inhibitor-related treatment outcomes. Clin Res Hepatol Gastroenterol 2023; 47:102149. [PMID: 37247692 DOI: 10.1016/j.clinre.2023.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Cell division cycle 42 (CDC42) facilitates immune escape and drug resistance towards immunotherapy in several malignancies. This prospective study aimed to explore the predictive value of serum CDC42 for immune checkpoint inhibitor (ICI)-treatment response and survival in advanced hepatocellular carcinoma (HCC) patients. METHODS Thirty advanced HCC patients scheduled for ICI or ICI-based treatment were enrolled in this prospective study, whose serum CDC42 was determined via enzyme-linked immunosorbent assay before therapy initiation. RESULTS The median (interquartile range) of serum CDC42 level was 766.5 (605.0-1329.5) pg/mL. Serum CDC42 was related to increased tumor size but decreased programmed death-ligand 1 combined positive score (PD-L1 CPS). With respect to ICI or ICI-based treatment outcomes, elevated serum CDC42 was associated with decreased disease control rate, but did not link with objective response rate. Patients with high serum CDC42 (vs. low, cut by its median level) had shortened progression-free survival (PFS), while overall survival (OS) only disclosed a reduced trend (lacked statistical significance) in patients with high serum CDC42 (vs. low). In detail, the median (95%CI) PFS and OS were 3.0 (0.0-6.0) months and 11.7 (2.7-20.7) months in patients with high serum CDC42, while they were 11.1 (6.6-15.6) months and 19.3 (14.5-24.1) months in patients with low CDC42. After adjusted by multivariate cox regression analysis, high serum CDC42 (vs. low) was independently associated with shortened PFS, but not OS. CONCLUSIONS Elevated serum CDC42 possesses a potential value in predicting worse ICI or ICI-based treatment outcomes in advanced HCC.
Collapse
Affiliation(s)
- Jinxia Xu
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China
| | - Ruiyu Shao
- Sixth Department of Oncology, Tangshan People's Hospital, Tangshan, China
| | - Xiaoru Zhang
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China
| | - Deshun Yao
- Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, China
| | - Sugui Han
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China.
| |
Collapse
|
2
|
Van Sinderen M, Griffiths M, Menkhorst E, Niven K, Dimitriadis E. Restoration of microRNA-29c in type I endometrioid cancer reduced endometrial cancer cell growth. Oncol Lett 2019; 18:2684-2693. [PMID: 31404303 DOI: 10.3892/ol.2019.10588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is the most common gynaecological cancer worldwide, and the prognosis of patients with advanced disease remains poor. MicroRNAs (miRs) are dysregulated in endometrial cancer. miRs-29-a, -b and -c expression levels are downregulated in endometrial cancer; however, a specific role for miR-29c and its target genes remain to be elucidated. The aim of the present study was to determine the functional effect of restoring miR-29c expression in endometrial cancer cell lines and to identify miR-29c targets involved in cancer progression. miR-29c expression in human endometrial tumour grades 1-3 and benign tissue as well as in the endometrial cancer cell lines Ishikawa, HEC1A and AN3CA were analysed using reverse transcriptase-quantitative PCR (RT-qPCR). The cell lines were transfected with miR-29c mimic, miR-29c inhibitor or scrambled control. xCELLigence real-time cell monitoring analysed proliferation and migration, and flow cytometry was used to analyse apoptosis and cell cycle. The expression of miR-29c target genes in transfected cell lines was analysed using RT-qPCR. miR-29c was downregulated in grade 1-3 endometrial cancer samples compared with benign endometrium. miR-29c was reduced in Ishikawa and AN3CA cells, but not in HEC1A cell lines compared with non-cancerous primary human endometrial epithelial cells. Overexpression of miR-29c variably reduced proliferation, increased apoptosis and reduced the expression levels of miR-29c target genes, including cell division cycle 42, HMG-box transcription factor 1, integrin subunit β 1, MCL1 apoptosis regulator BCL2 family member, MDM2 proto-oncogene, serum/glucocorticoid regulated kinase 1, sirtuin 1 and vascular endothelial growth factor A, across the three cell lines investigated. Inhibition of miR-29c in HEC1A cells increased proliferation and collagen type IV α 1 chain expression. The re-introduction of miR-29c to endometrial cancer cell lines reduced proliferation, increased apoptosis and reduced miR-29c target gene expression in vitro. The present results suggested that miR-29c may be a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Michelle Van Sinderen
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia
| | - Meaghan Griffiths
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria 3010, Australia
| | - Keith Niven
- FlowCore, Technology Research Platforms, Monash University, Clayton, Victoria 3800, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Xia P, Huang M, Zhang Y, Xiong X, Yan M, Xiong X, Yu W, Song E. NCK1 promotes the angiogenesis of cervical squamous carcinoma via Rac1/PAK1/MMP2 signal pathway. Gynecol Oncol 2018; 152:387-395. [PMID: 30442385 DOI: 10.1016/j.ygyno.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The study was to explore the roles of Nck1 in the angiogenesis of cervical squamous cell carcinoma (CSCC). METHODS mRNA and protein levels were evaluated with real-time quantitative PCR and immunohistochemisty/western blotting respectively. The cancer microvessel density (MVD) was assayed with CD34 endothelial labeling. Nck1 gene knock-in (SiHa-Nck1+) and knock-down (SiHa-Nck1-) were achieved by gene transfection and siRNA respectively. Protein level from cellular supernatant was measured with ELISA. Proliferation, migration and tube formation of the Human Umbilical Vein Endothelial cells (HUVECs) were evaluated by CCK-8 cell viability assay, transwell chamber assay and in vitro Matrigel tubulation assay respectively. RESULTS Nck1 level gradually increased from normal cervical epithelia to high-grade CIN, overexpressed in CSCC and was associated with cancer MVD. The ability of proliferation, migration and tube formation of HUVECs was enhanced in SiHa-Nck1+-treated while decreased in SiHa-NcK1--treated cells compared to SiHa-control-treated cells. Mechanistically, RAC1-GTP, p-PAK1 and MMP2 were increased in SiHa-NCK1+ cells and pretreatment with the Rac1 inhibitor (NSC23766) significantly decreased their levels. Furthermore, inhibition of PAK1 reduced MMP2 level in SiHa-Nck1+ cells whereas the level of Rac1-GTP was unaltered. Also, inhibition of Rac1 or PAK1 impaired angiogenesis-inducing capacity of cancer cells. CONCLUSIONS Nck1 promotes the angiogenesis-inducing capacity of CSCC via the Rac1/PAK1/MMP2 signal pathway.
Collapse
Affiliation(s)
- Pei Xia
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Mingchuan Huang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Yong Wai zheng Road, 330006, China
| | - Yuting Zhang
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Min Yan
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Xiaoliang Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Weiwei Yu
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Enlin Song
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China.
| |
Collapse
|
4
|
Yang Z, Wang H, Xia L, Oyang L, Zhou Y, Zhang B, Chen X, Luo X, Liao Q, Liang J. Overexpression of PAK1 Correlates with Aberrant Expression of EMT Markers and Poor Prognosis in Non-Small Cell Lung Cancer. J Cancer 2017; 8:1484-1491. [PMID: 28638464 PMCID: PMC5479255 DOI: 10.7150/jca.18553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
Objective: p21-activated kinases (PAKs) are serine/threonine protein kinases. PAK1 and epithelial-mesenchymal transition (EMT) are key therapeutic targets in cancer. The clinical significance of PAK1 and its potential association with EMT phenotype in non-small cell lung cancer (NSCLC) was investigated. Methods: Immunohistochemistry was used to detect the expression of PAK1, and mesenchymal and epithelial markers (vimentin, N-cadherin, and E-cadherin) in 186 cases of NSCLC tissues and 50 cases of tumor-adjacent normal tissues. The correlation of PAK1 with the clinicopathological characteristics, prognosis, and mesenchymal and epithelial markers in NSCLC were analyzed. Results: Compared with the non-tumor tissues, PAK1, vimentin, and N-cadherin levels were markedly elevated in NSCLC tissues, whereas the E-cadherin levels were significantly decreased (P<0.05). The aberrant expression of PAK1 was significantly associated with TNM stage and metastasis (P<0.001). Patients who displayed high expression of PAK1 may achieve a poorer progression-free survival (PFS) and overall survival (OS), compared to those with low expression of PAK1 (P=0.001 and P<0.001). Univariate and multivariate analysis showed that high expression of PAK1 was an independent predictor of poor prognosis [hazard ratio (HR) =2.121, P<0.001, HR=1.928, P=0.001, respectively]. In addition, significant correlations were observed between the EMT markers and OS or PFS (P<0.01). Interestingly, PAK1 expression was positively correlated with vimentin and N-cadherin levels (r=0.473, P<0.001; r=0.526, P<0.001, respectively) and negatively correlated with E-cadherin levels (r=-0.463, P<0.001) in NSCLC tissues. Conclusion: PAK1 may promote NSCLC progression and metastasis through EMT, thereby exhibiting the potential of an efficient prognostic predictor in NSCLC patients.
Collapse
Affiliation(s)
- Zhiying Yang
- Department of Histology and Embryology, Medical College, Hunan normal University, Changsha 410013, PR China
| | - Heran Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Baihua Zhang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xiaoyan Chen
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jianping Liang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|