1
|
Chen L, Zhu L, Fang J, Zhang N, Li D, Sheng X, Zhou J, Wang S, Wang J. Circular RNA circFoxo3 Promotes Granulosa Cell Apoptosis Under Oxidative Stress Through Regulation of FOXO3 Protein. DNA Cell Biol 2022; 41:1026-1037. [DOI: 10.1089/dna.2022.0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Linjun Chen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lihua Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ningyuan Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jie Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
El-Derany MO, Said RS, El-Demerdash E. Bone Marrow-Derived Mesenchymal Stem Cells Reverse Radiotherapy-Induced Premature Ovarian Failure: Emphasis on Signal Integration of TGF-β, Wnt/β-Catenin and Hippo Pathways. Stem Cell Rev Rep 2021; 17:1429-1445. [PMID: 33594662 DOI: 10.1007/s12015-021-10135-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Radiotherapy is an indispensable cancer treatment approach. However, it is associated with hazardous consequences on multiple organs characterized by insidious worsening severity over time. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) in radiation-induced premature ovarian failure (POF). Exposing female rats to 3.2 Gy whole-body ϒ-rays successfully induced POF. One week later, a single intravenous injection of BM-MSCs (2*106) cells was administered. BM-MSCs perfectly home to the damaged ovaries, enhanced ovarian follicle pool, and preserved the ovarian function manifested by restoring serum estradiol and follicle stimulating hormone levels, besides, rescuing the fertility outcomes of irradiated rats. These events have been associated with inhibiting ovarian apoptosis (Bax/Bcl2, caspase 3) and enhancing proliferation (PCNA). Interestingly, BM-MSCs reversed the inhibition of ovarian FOXO3 expression induced by radiation which resulted in increased primordial follicles stock. Moreover, BM-MSCs recovered the suppressed folliculogenesis process induced by radiation through upregulating FOXO1, GDF-9, and Fst genes expression accompanied by downregulating TGF-β which enhanced granulosa cells proliferation and secondary follicle development. Mechanistically, BM-MSCs miRNAs epigenetically upregulate Wnt/β-catenin and Hippo signaling pathways which are implicated in ovarian follicles growth and maturation. Therefore, BM-MSCs presented a ray of hope in the treatment of radiation-associated POF through genetic and epigenetic modulation of the integrated TGF-β, Wnt/β-catenin, and Hippo pathways which control apoptosis, proliferation, and differentiation of ovarian follicles.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
3
|
Bisphenol analogs AF, S and F: Effects on functional characteristics of porcine granulosa cells. Reprod Toxicol 2021; 103:18-27. [PMID: 34019995 DOI: 10.1016/j.reprotox.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
In order to replace industrial functions of the restricted endocrine disruptor bisphenol A (BPA), its structural analogs are increasingly employed without adequate assessment of their biological actions. Our study examined effects of the bisphenols AF (BPAF), S (BPS) and F (BPF), on functions of porcine ovarian granulosa cells (GCs) with the focus on viability, steroid production (10-9-10-4M), and expression of factors (10-9-10-5M) important for the follicle development: vascular endothelial growth factor A (VEGFA), matrix metalloproteinase 9 (MMP9), forkhead box O1 (FOXO1), and aryl hydrocarbon receptor (AHR). Cell viability was not impaired by the bisphenol analogs, except for the highest BPAF concentration (10-4M). While the lower concentrations of the bisphenols were without effect, each of them reduced follicle-stimulating hormone (FSH)-induced progesterone synthesis at the highest dose. Estradiol synthesis was sensitive to BPS, inhibitory effects of which were manifested from the concentration of 10-6M. Treatment of GCs with the selected bisphenol concentrations did not result in marked alterations in steroidogenic enzyme expression. Bisphenols did not significantly modulate VEGFA mRNA expression or output either under basal or FSH-stimulated conditions. BPF at 10-5M increased MMP9 expression in FSH-stimulated cells. FSH upregulated FOXO1 expression, however, none of the bisphenols significantly affected FOXO1 levels either in basal or in FSH-stimulated conditions. AHR mRNA expression remained unchanged after bisphenol treatment. Although the significant effects of BPAF, BPS and BPF appeared only at supraphysiological doses, the results obtained indicate that BPA analogs are not inert with regard to ovarian physiology.
Collapse
|
4
|
Molecular characterization and expression analysis of foxo3l in response to exogenous hormones in black rockfish (Sebastes schlegelii). Gene 2020; 753:144777. [PMID: 32428695 DOI: 10.1016/j.gene.2020.144777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
As a crucial member of the Forkhead Box family, class O (FoxO) plays an essential role in growth, cell differentiation, metabolism, immunization, and apoptosis. Meanwhile, FoxO3 is the primary regulator and effective inhibitor of primordial follicle activation. In this study, seven foxo genes were identified in black rockfish (Sebastes schlegelii), including two foxo1 genes (foxo1a, foxo1b), two foxo3 genes (foxo3, foxo3l), one foxo4 gene, and two foxo6 genes (foxo6a, foxo6b). foxo3l was derived from teleost-specific whole-genome duplication events. Evaluation of tissue expression pattern revealed that foxo3l displayed sexually dimorphic expression with a high level in the ovary and spatial expression only in the cytoplasm of follicle cells and oocytes. When the ovaries were stimulated by estrogen and gonadotropin, foxo3l expression was remarkably reduced, and the effect of androgen was completely different. We considered that foxo3l lost its ability to inhibit follicular precocity because of mass ovulation by hormone stimulation, resulting in its decreased expression. Such evidence indicated that foxo3l is an important regulator of reproduction-related functions in black rockfish. This study provides new insights into foxo3l genes for further functional research in teleost.
Collapse
|
5
|
The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci Rep 2020; 10:5061. [PMID: 32193402 PMCID: PMC7081221 DOI: 10.1038/s41598-020-60810-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Semen modifies the expression of genes related to immune function along the porcine female internal genital tract. Whether other pathways are induced by the deposition of spermatozoa and/or seminal plasma (SP), is yet undocumented. Here, to determine their relative impact on the uterine and tubal transcriptomes, microarray analyses were performed on the endocervix, endometrium and endosalpinx collected from pre-ovulatory sows 24 h after either mating or artificial insemination (AI) with specific ejaculate fractions containing spermatozoa or sperm-free SP. After enrichment analysis, we found an overrepresentation of genes and pathways associated with sperm transport and binding, oxidative stress and cell-to-cell recognition, such as PI3K-Akt, FoxO signaling, glycosaminoglycan biosynthesis and cAMP-related transcripts, among others. Although semen (either after mating or AI) seemed to have the highest impact along the entire genital tract, our results demonstrate that the SP itself also modifies the transcriptome. The detected modifications of the molecular profiles of the pre/peri-ovulatory endometrium and endosalpinx suggest an interplay for the survival, transport and binding of spermatozoa through, for instance the up-regulation of the Estrogen signaling pathway associated with attachment and release from the oviductal reservoir.
Collapse
|
6
|
Ehsani M, Mohammadnia-Afrouzi M, Mirzakhani M, Esmaeilzadeh S, Shahbazi M. Female Unexplained Infertility: A Disease with Imbalanced Adaptive Immunity. J Hum Reprod Sci 2019; 12:274-282. [PMID: 32038075 PMCID: PMC6937763 DOI: 10.4103/jhrs.jhrs_30_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Unexplained infertility (UI) among women consists of only 10-17% of infertile females. Unexplained or idiopathic infertility is a condition, in which couples are not able to conceive without any definite causes. The presence of the decidual immune system (innate or adaptive) is essential for a successful pregnancy and fertility that is mediated by T helper (Th) 1, Th2, Th17, T follicular helper, CD8+ CD28− T, and regulatory T cells, as well as autoantibodies such as antiphospholipid antibody, antithyroid antibody, antiovarian antibody, cytokines, and chemokines. Therefore, altered proportions or levels of the mentioned compartments of the adaptive immune system may cause pregnancy failure and infertility, especially in UI. Consequently, a deep understanding of immunological compartments in females with UI may help us to define the causes of this disease with regard to immunology. This review will discuss immunological factors, including cellular, molecular components, and transcription factors that are involved in the etiology of UI.
Collapse
Affiliation(s)
- Motahareh Ehsani
- Student Research Committee, School of Medicine, Babol University of Medical Science, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Infertility and Health Reproductive Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mirzakhani
- Student Research Committee, School of Medicine, Babol University of Medical Science, Babol, Iran
| | - Sedighe Esmaeilzadeh
- Infertility and Health Reproductive Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Infertility and Health Reproductive Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Yuan X, Li Z, Kong Y, Zhong Y, He Y, Zhang A, Zhou X, Jiang Y, Zhang Z, Zhang H, Li J. P65 Targets FGFR1 to Regulate the Survival of Ovarian Granulosa Cells. Cells 2019; 8:cells8111334. [PMID: 31671754 PMCID: PMC6912588 DOI: 10.3390/cells8111334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
In female mammals, the abnormal apoptosis of ovarian granulosa cells (GCs) impairs follicular development and causes reproductive dysfunction. Many studies have indicated that the FGFR1 gene of the PI3K signaling pathway and the p65 subunit of the transcription factor NF-κB may regulate the proliferation and apoptosis of GCs involved in follicular development. However, little is known about whether p65 regulates the transcription of FGFR1, as well as the biological effects of p65 and FGFR1 on the survival of GCs and follicular development. In porcine follicles and GCs, we found that p65 and FGFR1 were exclusively expressed in the GCs of follicles, and the mRNA and protein levels of p65 and FGFR1 significantly increased from small to large follicles. Both p65 and FGFR1 were found to activate the PI3K signaling pathway, and the expressions of proliferation markers (PCNA and MKI67) and the anti-apoptotic gene BCL2 were significantly increased by p65 and FGFR1. Furthermore, both p65 and FGFR1 were observed to promote cell proliferation and inhibit the cell apoptosis of GCs, and p65 was confirmed to bind at the −348/−338 region of FGFR1 to positively regulate its transcription. Moreover, p65 was further found to enhance the pro-proliferation and anti-apoptotic effects of FGFR1. Taken together, p65 may target the −348/−338 region of FGFR1, promote the transcription of FGFR1, and enhance the pro-proliferation effect and anti-apoptotic effect of FGFR1 to facilitate the growth of follicles. This study will provide useful information for further investigations on the p65-mediated-FGFR1 signaling pathway during folliculogenesis in mammals.
Collapse
Affiliation(s)
- Xiaolong Yuan
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhonghui Li
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China.
| | - Yaru Kong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuyi Zhong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingting He
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ailing Zhang
- College of Biology and Food Engineering/Development, Center of Applied Ecology and Ecological Engineering in Universities, Guangdong University of Education, Guangzhou 510303, China.
| | - Xiaofeng Zhou
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yao Jiang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqi Li
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Xie Y, Zhang K, Zhang K, Zhang J, Wang L, Wang X, Hu X, Liang Z, Li J. Toll-like receptors and high mobility group box 1 in granulosa cells during bovine follicle maturation. J Cell Physiol 2019; 235:3447-3462. [PMID: 31544976 DOI: 10.1002/jcp.29234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are present in the ovaries and reproductive tract of various mammals. The biological function of TLR during ovulation is one of the main contents in the research of reproductive immunology. In this study, we found that messenger RNA levels of TLR1-TLR10 in granulosa cells were different, and TLRs and high mobility group box 1 (HMGB1) in granulosa cells of large follicles were significantly higher than those of small and middle follicles. Coimmunoprecipitation results showed that HMGB1 interacts with TLR2 in granulosa cells, especially large follicles. The result of immunohistochemistry showed that TLRs and HMGB1 were present in granulosa cell layer of ovarian follicles. We also found 25 mIU/ml follicle-stimulating hormone (FSH) significantly upregulated the expression of TLRs and HMGB1. These results suggest that TLR2/4 and HMGB1 in granulosa cells may be involved in the ovarian innate immune and ovarian follicular maturation, regulated by FSH. However, further research of the function and mechanisms of TLRs and HMGB1 in granulosa cells are needed.
Collapse
Affiliation(s)
- Yingying Xie
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kai Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingyan Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xurong Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuequan Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zijing Liang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Zhang LY, Chen Y, Jia J, Zhu X, He Y, Wu LM. MiR-27a promotes EMT in ovarian cancer through active Wnt/𝜷-catenin signalling by targeting FOXO1. Cancer Biomark 2019; 24:31-42. [PMID: 30614794 DOI: 10.3233/cbm-181229] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is the fifth most common type of cancer in women worldwide. MiR-27a plays an important role in the development of ovarian cancer. However, the exact function and molecular mechanism of miR-27a in epithelial-mesenchymal transition (EMT) has not been thoroughly elucidated to date. METHODS Quantitative real-time PCR (qRT-PCR) was used to determine the expression of miR-27a and FOXO1 mRNA in ovarian tissues and cells. The function of miR-27a in ovarian cancer was investigated through overexpression and knockdown of miR-27a in vitro. Wound healing and Transwell assays were performed to evaluate the migration and invasive capacity of the cells. A luciferase reporter assay was conducted to confirm the interaction between miR-27a and FOXO1. Western blotting was used to evaluate FOXO1, EMT and Wnt/β-catenin relative protein expression. RESULTS In our study, we found that the mRNA expression level of miR-27a was significantly higher in ovarian cancer tissues and in HO8910 and OV90 cells. Functional experiments showed that miR-27a overexpression potentiated the migration and invasion of HO8910 and OV90 cells, while miR-27a inhibition reduced the cells' migration and invasion. Moreover, miR-27a upregulated the expression of mesenchymal cell markers and downregulated the expression of epithelial cell markers, which were restored via silencing of miR-27a expression. Subsequently, miR-27a was found to directly target and suppress the expression of FOXO1. Finally, we demonstrated that miR-27a promoted the progression of ovarian cancer cells and induced the process of EMT via the Wnt/β-catenin signalling pathway through inhibition of FOXO1. CONCLUSIONS Taken together, these results indicate that targeting miR-27a and FOXO1 could represent a strategy for anticancer therapy in ovarian cancer.
Collapse
Affiliation(s)
- Li-Ya Zhang
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Yuan Chen
- Huizhou College of Life Sciences, Huizhou, Guangdong 516001, China
| | - Jue Jia
- Department of Gynecology, Shandong Provincial Tumor Hospital, Jinan, Shandong 250117, China
| | - Xi Zhu
- Department of Gynecology, Shenyang Maternal and Child Hospital, Shenyang, Liaoning 110000, China
| | - Yan He
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Li-Ming Wu
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| |
Collapse
|
10
|
Xin X, Li Z, Zhong Y, Li Q, Wang J, Zhang H, Yuan X, Li J, Zhang Z. KISS1 Suppresses Apoptosis and Stimulates the Synthesis of E2 in Porcine Ovarian Granulosa Cells. Animals (Basel) 2019; 9:ani9020054. [PMID: 30759773 PMCID: PMC6406274 DOI: 10.3390/ani9020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022] Open
Abstract
Previous studies have strongly recommended that KISS-1 metastasis suppressor (KISS1) plays an essential gatekeeper of the initiation of reproductive maturation in mammals. However, KISS1 has been recently reported to highly express in ovarian granulosa cells (GCs). But the biological functionalities of KISS1 on cell apoptosis, cell cycle, and synthesis of estradiol-17β (E2) have not been explored in GCs. In this study, using porcine GCs as a cellular model, the overexpression plasmid of KISS1 was built to explore the biological effects of KISS1 on the PI3K signaling pathway, estrogen signaling pathway, cell apoptosis, cell cycle, and E2 secretion. We found that mRNA of KISS1 highly expressed in the ovary and significantly increased from immature to mature follicles in gilts. Overexpression of KISS1 could significantly increase the mRNA expression of PIK3CG, PIK3C1, and PDK1, and significantly decreased the mRNA levels of FOXO3, TSC2, and BAD of PI3K signaling pathway. Furthermore, results of the flow cytometry showed that overexpression of KISS1 significantly inhibited the apoptosis of GCs and decreased the percentage of GCs at G0/G1 phase of the cell cycle. Additionally, overexpression of KISS1 could increase the mRNA levels of Star, CYP17, 3B-HSD, 17B-HSD of estrogen synthesis signaling pathway, significantly increase the concentration of E2 in the supernatant of the cultured GCs, and up-regulate the mRNA expression levels of ESR1 and ESR2. These results suggested that KISS1 might suppress cell apoptosis through activating the PI3K signaling pathway and stimulate synthesis of E2 via boosting the estrogen synthesis signaling pathway. This study would be of great interests for exploring the biological functionalities of KISS1 in the folliculogenesis and sex steroid production of the ovaries in mammals.
Collapse
Affiliation(s)
- Xiaoping Xin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Zhonghui Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yuyi Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Qingqing Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jiaying Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
11
|
Michalovic L, Currin L, Gutierrez K, Bellefleur A, Glanzner WG, Schuermann Y, Macedo MP, Bohrer RC, Dicks N, Lopez R, Taibi M, Madogwe E, St‐Yves A, Mondadori RG, Gourdon J, Vigneault C, Baldassarre H, Bordignon V. Granulosa cells of prepubertal cattle respond to gonadotropin signaling and upregulate genes that promote follicular growth and prevent cell apoptosis. Mol Reprod Dev 2018; 85:909-920. [DOI: 10.1002/mrd.23066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Laura Michalovic
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Luke Currin
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | | | - Werner G. Glanzner
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Yasmin Schuermann
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Mariana P. Macedo
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Rodrigo C. Bohrer
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Rosalba Lopez
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Milena Taibi
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Ejimedo Madogwe
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Audrey St‐Yves
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Rafael G. Mondadori
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Jim Gourdon
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
- Comparative Medicine and Animal Resources Centre, McGill UniversityMontreal Quebec Canada
| | | | - Hernan Baldassarre
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| |
Collapse
|
12
|
MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. In Vitro Cell Dev Biol Anim 2018; 54:715-724. [PMID: 30341633 DOI: 10.1007/s11626-018-0292-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
In mammalian ovaries, many studies demonstrated that the proliferation and apoptosis of granulosa cells are involved in folliculogenesis. Previous evidence suggests that miR-126-3p might get involved in the proliferation and apoptosis of granulosa cells, and tuberous sclerosis complex 1 (TSC1) gene was predicted as one target of miR-126-3p, and moreover, granulosa cell-specific TSC1 knockout stimulated folliculogenesis in mice. However, the molecular regulation of miR-126-3p on TSC1 and its effects on cell proliferation and apoptosis remain virtually unexplored in granulosa cells. Using porcine granulosa cells as a model, the luciferase report assay, mutation, deletion, Annexin-V/PI staining, and EdU assays were applied to investigate the molecular mechanism for miR-126-3p regulating the expression of TSC1 and their effects on the cell proliferation and apoptosis. We found that miR-126-3p showed a positive effect on cell proliferation and a negative effect on cell apoptosis in porcine granulosa cells, and knockdown of TSC1 significantly promoted cell proliferation and significantly inhibited cell apoptosis in porcine granulosa cells. Furthermore, miR-126-3p might target and repress the expressions of TSC1 at the post-transcriptional level, thereby promoting cell proliferation and inhibiting cell apoptosis of granulosa cells. These findings would provide of great insight in further exploring the molecular regulation of miR-126-3p and TSC1 on the functions of granulosa cells during the folliculogenesis in mammals.
Collapse
|