1
|
Pitsava G, Maria AG, Faucz FR. Disorders of the adrenal cortex: Genetic and molecular aspects. Front Endocrinol (Lausanne) 2022; 13:931389. [PMID: 36105398 PMCID: PMC9465606 DOI: 10.3389/fendo.2022.931389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Adrenal cortex produces glucocorticoids, mineralocorticoids and adrenal androgens which are essential for life, supporting balance, immune response and sexual maturation. Adrenocortical tumors and hyperplasias are a heterogenous group of adrenal disorders and they can be either sporadic or familial. Adrenocortical cancer is a rare and aggressive malignancy, and it is associated with poor prognosis. With the advance of next-generation sequencing technologies and improvement of genomic data analysis over the past decade, various genetic defects, either from germline or somatic origin, have been unraveled, improving diagnosis and treatment of numerous genetic disorders, including adrenocortical diseases. This review gives an overview of disorders associated with the adrenal cortex, the genetic factors of these disorders and their molecular implications.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- Molecular Genomics Core (MGC), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- *Correspondence: Fabio R. Faucz,
| |
Collapse
|
2
|
Abstract
Adrenocortical carcinoma (ACC) is an aggressive and rare neoplasm that originates in the cortex of the adrenal gland. The disease is associated with heterogeneous but mostly poor outcomes and lacks effective pharmaceutical treatment options. Multi-omics studies have defined the landscape of molecular alterations in ACC. Specific molecular signatures can be detected in body fluids, potentially enabling improved diagnostic applications for patients with adrenal tumours. Importantly, pan-molecular data sets further reveal a spectrum within ACC, with three major subgroups that have different disease outcomes. These new subgroups have value as prognostic biomarkers. Research has revealed that the p53-RB and the WNT-β-catenin pathways are common disease drivers in ACC. However, these pathways remain difficult to target by therapeutic interventions. Instead, a unique characteristic of ACC is steroidogenic differentiation, which has emerged as a potential treatment target, with several agents undergoing preclinical or clinical investigations. Finally, a large proportion of ACC tumours have genetic profiles that are associated with promising therapeutic responsiveness in other cancers. All these opportunities now await translation from the laboratory into the clinical setting, thereby offering a real potential of improved survival outcomes and increased quality of life for patients with this serious condition.
Collapse
Affiliation(s)
- Joakim Crona
- Department of Medical Sciences, Uppsala Universitet, Uppsala, Sweden.
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Pérez-Ardila MA, Naranjo-Millán J, Giral H, Mugnier J, Altamar H. Late recurrence of adrenocortical carcinoma and metastatic disease. Case report. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n3.70507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Adrenocortical carcinoma (ACC) is a malignancy with an annual incidence of 0.72 cases per million people. It is a rare tumor that is associated with high mortality in late stages, as well as with a 5-year survival of 13% in stage IV patients, and 61% in stage II lesions. Nevertheless, tumor recurrence occurs in up to 54% at 23 months with predominance of locoregional involvement, being striking the late presentation of tumor recurrence with extensive involvement.Case presentation: This is the case of a 52-year-old male patient with a history of resection of an ACC of 6cm five years earlier, who was admitted for decompensated heart failure. A chest x-ray was taken suggesting metastasis. After conducting biochemical studies and CT scan of the abdomen, ACC with metastases to liver and lung was diagnosed. The patient decided not to receive palliative chemotherapy.Conclusion: This unfortunate outcome is related to the lack of follow-up after the initial procedure. Clinical, hormonal, and imaging evaluation is recommended every 3 months for 2 years, and then at least every 6 months.
Collapse
|
4
|
Abstract
Primary aldosteronism (PA), the most common form of secondary hypertension, can be either surgically cured or treated with targeted pharmacotherapy. PA is frequently undiagnosed and untreated, leading to aldosterone-specific cardiovascular morbidity and nephrotoxicity. Thus, clinicians should perform case detection testing for PA at least once in all patients with hypertension. Confirmatory testing is indicated in most patients with positive case detection testing results. The next step is to determine whether patients with confirmed PA have a disease that can be cured with surgery or whether it should be treated medically; this step is guided by computed tomography scan of the adrenal glands and adrenal venous sampling. With appropriate surgical expertise, laparoscopic unilateral adrenalectomy is safe, efficient and curative in patients with unilateral adrenal disease. In patients who have bilateral aldosterone hypersecretion, the optimal management is a low-sodium diet and lifelong treatment with a mineralocorticoid receptor antagonist administered at a dosage to maintain a high-normal serum potassium concentration without the aid of oral potassium supplements.
Collapse
Affiliation(s)
- W F Young
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Crona J, Backman S, Welin S, Taïeb D, Hellman P, Stålberg P, Skogseid B, Pacak K. RNA-Sequencing Analysis of Adrenocortical Carcinoma, Pheochromocytoma and Paraganglioma from a Pan-Cancer Perspective. Cancers (Basel) 2018; 10:E518. [PMID: 30558313 PMCID: PMC6315481 DOI: 10.3390/cancers10120518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022] Open
Abstract
Adrenocortical carcinoma (ACC) and pheochromocytoma and paraganglioma (PPGL) are defined by clinicopathological criteria and can be further sub-divided based on different molecular features. Whether differences between these molecular subgroups are significant enough to re-challenge their current clinicopathological classification is currently unknown. It is also not fully understood to which other cancers ACC and PPGL show similarity to. To address these questions, we included recent RNA-Seq data from the Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) datasets. Two bioinformatics pipelines were used for unsupervised clustering and principal components analysis. Results were validated using consensus clustering model and interpreted according to previous pan-cancer experiments. Two datasets consisting of 3319 tumors from 35 disease categories were studied. Consistent with the current classification, ACCs clustered as a homogenous group in a pan-cancer context. It also clustered close to neural crest derived tumors, including gliomas, neuroblastomas, pancreatic neuroendocrine tumors, and PPGLs. Contrary, some PPGLs mixed with pancreatic neuroendocrine tumors or neuroblastomas. Thus, our unbiased gene-expression analysis of PPGL did not overlap with their current clinicopathological classification. These results emphasize some importances of the shared embryological origin of these tumors, all either related or close to neural crest tumors, and opens for investigation of a complementary categorization based on gene-expression features.
Collapse
Affiliation(s)
- Joakim Crona
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185 Uppsala, Sweden.
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD 20892, USA.
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset ing 70, 75185 Uppsala, Sweden.
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185 Uppsala, Sweden.
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix Marseille Université, 13385 Marseille, France.
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset ing 70, 75185 Uppsala, Sweden.
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset ing 70, 75185 Uppsala, Sweden.
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset ing 78, 75185 Uppsala, Sweden.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, Room 1E-3140, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Seccia TM, Caroccia B, Gomez-Sanchez EP, Gomez-Sanchez CE, Rossi GP. The Biology of Normal Zona Glomerulosa and Aldosterone-Producing Adenoma: Pathological Implications. Endocr Rev 2018; 39:1029-1056. [PMID: 30007283 PMCID: PMC6236434 DOI: 10.1210/er.2018-00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
The identification of several germline and somatic ion channel mutations in aldosterone-producing adenomas (APAs) and detection of cell clusters that can be responsible for excess aldosterone production, as well as the isolation of autoantibodies activating the angiotensin II type 1 receptor, have rapidly advanced the understanding of the biology of primary aldosteronism (PA), particularly that of APA. Hence, the main purpose of this review is to discuss how discoveries of the last decade could affect histopathology analysis and clinical practice. The structural remodeling through development and aging of the human adrenal cortex, particularly of the zona glomerulosa, and the complex regulation of aldosterone, with emphasis on the concepts of zonation and channelopathies, will be addressed. Finally, the diagnostic workup for PA and its subtyping to optimize treatment are reviewed.
Collapse
Affiliation(s)
- Teresa M Seccia
- Department of Medicine-DIMED, University of Padua, Padua PD, Italy
| | | | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi.,University of Mississippi Medical Center, Jackson, Mississippi
| | - Gian Paolo Rossi
- Department of Medicine-DIMED, University of Padua, Padua PD, Italy
| |
Collapse
|
7
|
Lotfi CFP, Kremer JL, dos Santos Passaia B, Cavalcante IP. The human adrenal cortex: growth control and disorders. Clinics (Sao Paulo) 2018; 73:e473s. [PMID: 30208164 PMCID: PMC6113920 DOI: 10.6061/clinics/2018/e473s] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.
Collapse
Affiliation(s)
- Claudimara Ferini Pacicco Lotfi
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Jean Lucas Kremer
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Barbara dos Santos Passaia
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Isadora Pontes Cavalcante
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
8
|
St-Jean M, Ghorayeb NE, Bourdeau I, Lacroix A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best Pract Res Clin Endocrinol Metab 2018; 32:165-187. [PMID: 29678284 DOI: 10.1016/j.beem.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The regulation of cortisol or aldosterone production when ACTH of pituitary origin or the renin-angiotensin systems are suppressed in primary adrenal Cushing's syndrome or in primary aldosteronism is exerted by diverse genetic and molecular mechanisms. In addition to recently identified mutations in various genes implicated in the cyclic AMP or ion channel pathways, steroidogenesis is not really autonomous as it is frequently regulated by the aberrant adrenocortical expression of diverse hormone receptors, particularly G-protein coupled hormone receptors (GPCR) which can substitute for the normal function of ACTH or angiotensin-II. In addition, paracrine or autocrine production of ligands for the aberrant GPCR such as ACTH or serotonin is found in some adrenal tumors or hyperplasias and participates in a complex regulatory loop causing steroid excess. Targeted therapies to block the aberrant ligands or their receptors could become useful in the future, particularly for patients with bilateral source of steroid excess.
Collapse
Affiliation(s)
- Matthieu St-Jean
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada.
| | - Nada El Ghorayeb
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada.
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada.
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada.
| |
Collapse
|
9
|
Bonnet-Serrano F, Bertherat J. Genetics of tumors of the adrenal cortex. Endocr Relat Cancer 2018; 25:R131-R152. [PMID: 29233839 DOI: 10.1530/erc-17-0361] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023]
Abstract
This review describes the molecular alterations observed in the various types of tumors of the adrenal cortex, excluding Conn adenomas, especially the alterations identified by genomic approaches these last five years. Two main forms of bilateral adrenocortical tumors can be distinguished according to size and aspect of the nodules: primary pigmented nodular adrenal disease (PPNAD), which can be sporadic or part of Carney complex and primary bilateral macro nodular adrenal hyperplasia (PBMAH). The bilateral nature of the tumors suggests the existence of an underlying genetic predisposition. PPNAD and Carney complex are mainly due to germline-inactivating mutations of PRKAR1A, coding for a regulatory subunit of PKA, whereas PBMAH genetic seems more complex. However, genome-wide approaches allowed the identification of a new tumor suppressor gene, ARMC5, whose germline alteration could be responsible for at least 25% of PBMAH cases. Unilateral adrenocortical tumors are more frequent, mostly adenomas. The Wnt/beta-catenin pathway can be activated in both benign and malignant tumors by CTNNB1 mutations and by ZNRF3 inactivation in adrenal cancer (ACC). Some other signaling pathways are more specific of the tumor dignity. Thus, somatic mutations of cAMP/PKA pathway genes, mainly PRKACA, coding for the catalytic alpha-subunit of PKA, are found in cortisol-secreting adenomas, whereas IGF-II overexpression and alterations of p53 signaling pathway are observed in ACC. Genome-wide approaches including transcriptome, SNP, methylome and miRome analysis have identified new genetic and epigenetic alterations and the further clustering of ACC in subgroups associated with different prognosis, allowing the development of new prognosis markers.
Collapse
Affiliation(s)
- Fidéline Bonnet-Serrano
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Hormonal Biology LaboratoryAssistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jérôme Bertherat
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Department of EndocrinologyAssistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| |
Collapse
|
10
|
|