1
|
Gupta MM, Gilhotra R, Deopa D, Bhat AA, Thapa R, Singla N, Kulshrestha R, Gupta G. Epigenetics of Pulmonary Tuberculosis. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:127-144. [DOI: 10.1007/978-981-99-4780-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Pehrson I, Sayyab S, Das J, Idh N, Paues J, Méndez-Aranda M, Ugarte-Gil C, Lerm M. The spectrum of tuberculosis described as differential DNA methylation patterns in alveolar macrophages and alveolar T cells. Clin Epigenetics 2022; 14:175. [PMID: 36527066 PMCID: PMC9758029 DOI: 10.1186/s13148-022-01390-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Host innate immune cells have been identified as key players in the early eradication of Mycobacterium tuberculosis and in the maintenance of an anti-mycobacterial immune memory, which we and others have shown are induced through epigenetic reprogramming. Studies on human tuberculosis immunity are dominated by those using peripheral blood as surrogate markers for immunity. We aimed to investigate DNA methylation patterns in immune cells of the lung compartment by obtaining induced sputum from M. tuberculosis- exposed subjects including symptom-free subjects testing positively and negatively for latent tuberculosis as well as patients diagnosed with active tuberculosis. Alveolar macrophages and alveolar T cells were isolated from the collected sputum and DNA methylome analyses performed (Illumina Infinium Human Methylation 450 k). RESULTS Multidimensional scaling analysis revealed that DNA methylomes of cells from the tuberculosis-exposed subjects and controls appeared as separate clusters. The numerous genes that were differentially methylated between the groups were functionally connected and overlapped with previous findings of trained immunity and tuberculosis. In addition, analysis of the interferon-gamma release assay (IGRA) status of the subjects demonstrated that the IGRA status was reflected in the DNA methylome by a unique signature. CONCLUSIONS This pilot study suggests that M. tuberculosis induces epigenetic reprogramming in immune cells of the lung compartment, reflected as a specific DNA methylation pattern. The DNA methylation signature emerging from the comparison of IGRA-negative and IGRA-positive subjects revealed a spectrum of signature strength with the TB patients grouping together at one end of the spectrum, both in alveolar macrophages and T cells. DNA methylation-based biosignatures could be considered for further development towards a clinically useful tool for determining tuberculosis infection status and the level of tuberculosis exposure.
Collapse
Affiliation(s)
- Isabelle Pehrson
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Shumaila Sayyab
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Jyotirmoy Das
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden ,grid.5640.70000 0001 2162 9922Bioinformatics Unit (Core Facility), Linköping University, Linköping, Sweden ,grid.5640.70000 0001 2162 9922Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nina Idh
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Jakob Paues
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden ,grid.5640.70000 0001 2162 9922Division of Infectious Diseases, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Melissa Méndez-Aranda
- grid.11100.310000 0001 0673 9488Laboratorio de Investigación en Enfermedades Infecciosas, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - César Ugarte-Gil
- grid.11100.310000 0001 0673 9488School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru ,grid.11100.310000 0001 0673 9488Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Lerm
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| |
Collapse
|
3
|
Abstract
Content List ‐ Read more articles from the symposium: “The 10th International Conference on the Pathogenesis of Mycobacterial Infections”.
Collapse
Affiliation(s)
- S Brighenti
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Lerm
- Department of Clinical and Experimental Medicine, Linkoping University, Linköping, Sweden
| |
Collapse
|