1
|
Sun SW, Wang XJ, Yan RC, Huang L, Hou M. Oxidative Stress-related Gene Signature: A Prognostic Tool for Predicting Survival in ST-elevation MI. Eur Cardiol 2025; 20:e11. [PMID: 40343143 PMCID: PMC12060176 DOI: 10.15420/ecr.2024.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/26/2025] [Indexed: 05/11/2025] Open
Abstract
Background This study aimed to identify differentially expressed oxidative stress-related genes (DEOSRGs) in ST-elevation MI (STEMI) patients and examine their connection to clinical outcomes. Methods We conducted a systematic review of Gene Expression Omnibus datasets, selecting GSE49925, GSE60993 and GSE61144 for analysis. DEOSRGs were identified using GEO2R2, overlapping across the selected datasets. Functional enrichment analysis was performed to understand the biological roles of the DEOSRGs. An optimal model was constructed using Least Absolute Shrinkage and Selection Operator penalised Cox proportional hazards regression. The clinical utility of the signature was assessed through survival analysis, receiver operating characteristic (ROC) curve and decision curve analysis. A prognostic nomogram was developed to predict survival risk, with the signature being externally validated using our own plasma samples. Results A prognostic signature was formulated, incorporating three upregulated DEOSRGs (matrix metalloproteinase-9, arginase 1, interleukin 18 receptor accessory protein) and three clinical variables (age, serum creatinine level, Gensini score). This signature successfully stratified patients into low- and high-risk groups. Survival analysis, ROC curve analysis and decision curve analysis demonstrated the signature's robust predictive performance and clinical utility within 2 years post-disease onset. External validation confirmed significant outcome differences between the risk groups. Conclusion This study identified DEOSRGs in STEMI patients and developed a prognostic signature integrating gene expression levels and clinical variables. While the signature showed promising predictive performance and clinical utility, the findings should be interpreted considering the limitations of small sample size and control group selection.
Collapse
Affiliation(s)
- Shuo-wen Sun
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| | - Xing-jie Wang
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| | - Ruo-chen Yan
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| | - Lei Huang
- Heart Center, Tianjin Third Central HospitalTianjin, China
| | - Min Hou
- Department of Laboratory Medicine, Tianjin Chest HospitalTianjin, China
| |
Collapse
|
2
|
Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, Brugaletta S, Campuzano V, Egea G, Dantas AP. Extracellular Vesicles as Mediators of Endothelial Dysfunction in Cardiovascular Diseases. Int J Mol Sci 2025; 26:1008. [PMID: 39940780 PMCID: PMC11816526 DOI: 10.3390/ijms26031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This comprehensive review aims to provide a thorough overview of the vital role that extracellular vesicles (EVs) play in endothelial dysfunction, particularly emphasizing how physiological factors-such as sex and aging-along with significant cardiovascular risk factors, influence this process. The review covers studies ranging from the first description of EVs in 1945 to contemporary insights into their biological roles in intercellular signaling and endothelial dysfunction. A comprehensive analysis of peer-reviewed articles and reviews indexed in the PubMed database was conducted to compile the information. Initially, Medical Subject Headings (MeSH) terms included keywords aimed at providing general knowledge about the role of EVs in the regulation of endothelial signaling, such as "extracellular vesicles", "endothelium", and "intercellular signaling". Subsequently, terms related to the pathophysiological implications of EV interactions with endothelial dysfunction and cardiovascular disease were added, including "cardiovascular disease", "sex", "aging", "atherosclerosis", "obesity", and "diabetes". Additionally, the potential applications of EVs in cardiovascular disease were explored using the MeSH terms "extracellular vesicles", "cardiovascular disease", "biomarker", and "therapeutic strategy". The results of this bibliographical review reveal that EVs have the capacity to induce various cellular responses within the cardiovascular system and play a significant role in the complex landscape of endothelial dysfunction and cardiovascular disease. The composition of the EV cargo is subject to modification by pathophysiological conditions such as sex, aging, and cardiovascular risk factors, which result in a complex regulatory influence on endothelial function and neighboring cells when released from a dysfunctional endothelium. Moreover, the data suggest that this field still requires further exploration, as EV biology is continuously evolving, presenting a dynamic and engaging area for research. A deeper understanding of the molecular cargo involved in EV-endothelium interactions could yield valuable biomarkers for monitoring cardiovascular disease progression and facilitate the development of innovative bioengineered therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Francisco Rafael Jimenez-Trinidad
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Sergi Calvo-Gomez
- Department of Biomedical Sciences, School of Medicine, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain;
| | - Manel Sabaté
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Rare Diseases Biomedical Research Network Center (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center of Medical Genetics, University of Antwerpen, 2659 Edegem, Belgium
| | - Ana Paula Dantas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Threetong T, Yongsiri S, Annopawong K. Surgical Outcomes of Mitomycin-C Augmented Trabeculectomy in Neovascular Glaucoma and Prognostic Factors for Surgical Failure in Thailand. Clin Ophthalmol 2024; 18:3111-3123. [PMID: 39502628 PMCID: PMC11537048 DOI: 10.2147/opth.s485331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose To evaluate the surgical outcomes and identify ocular and systemic prognostic factors of trabeculectomy with mitomycin C (MMC) in the eyes of patients with neovascular glaucoma (NVG) in Thailand. Patients and Methods This retrospective study was conducted by reviewing records of Thai patients with NVG who underwent trabeculectomy with MMC between 2013 and 2022. Criterion failure was defined as intraocular pressure (IOP) >21 mmHg or less than a 20% reduction below baseline on two consecutive study visits after 3 months, IOP ≤5 mmHg on two consecutive study visits after 3 months, reoperation for glaucoma, and loss of light perception. Kaplan-Meier survival curves were used to examine success rates, and risk factors were analyzed using Cox's proportional hazard model. Results The study included 106 eyes of 106 patients with a mean age of 57 years (range, 27-87 years). The cause of NVG was proliferative diabetic retinopathy (PDR) in 63 eyes (59.43%), central retinal vein occlusion (CRVO) in 39 eyes (36.79%), and ocular ischemic syndrome (OIS) in 4 eyes (3.77%). The cumulative probability of success in the first year was 73.6% with anti-glaucoma medication and 54.7% without medication. The multivariate model demonstrated that major cardiovascular events (hazard ratio [HR], 2.778 p=0.001) and preoperative systemic antiglaucoma medication use (HR, 1.837, p=0.045) were prognostic factors for surgical failure among all NVG patients. Postoperative manipulation with a subconjunctival injection of MMC occurred significantly more frequently in the failure group (HR, 3.100; p<0.001). Conclusion Trabeculectomy with MMC effectively reduced the elevated IOP associated with NVG in Thailand. Underlying systemic diseases involving major vascular events and the use of adjunct systemic IOP-lowering medications were prognostic factors for surgical failure.
Collapse
Affiliation(s)
- Thanatporn Threetong
- Department of Ophthalmology, Faculty of Medicine, Burapha University, Chonburi, Thailand
| | - Somchai Yongsiri
- Department of Medicine, Faculty of Medicine, Burapha University, Chonburi, Thailand
| | - Kornkamol Annopawong
- Department of Ophthalmology, Rajavithi Hospital and College of Medicine, Rangsit University, Bangkok, Thailand
| |
Collapse
|
4
|
Zhu Z, Wang M, Lu S, Dai S, Liu J. Role of macrophage polarization in heart failure and traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1434654. [PMID: 39104386 PMCID: PMC11298811 DOI: 10.3389/fphar.2024.1434654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Heart failure (HF) has a severe impact on public health development due to high morbidity and mortality and is associated with imbalances in cardiac immunoregulation. Macrophages, a major cell population involved in cardiac immune response and inflammation, are highly heterogeneous and polarized into M1 and M2 types depending on the microenvironment. M1 macrophage releases inflammatory factors and chemokines to activate the immune response and remove harmful substances, while M2 macrophage releases anti-inflammatory factors to inhibit the overactive immune response and promote tissue repair. M1 and M2 restrict each other to maintain cardiac homeostasis. The dynamic balance of M1 and M2 is closely related to the Traditional Chinese Medicine (TCM) yin-yang theory, and the imbalance of yin and yang will result in a pathological state of the organism. Studies have confirmed that TCM produces positive effects on HF by regulating macrophage polarization. This review describes the critical role of macrophage polarization in inflammation, fibrosis, angiogenesis and electrophysiology in the course of HF, as well as the potential mechanism of TCM regulation of macrophage polarization in preventing and treating HF, thereby providing new ideas for clinical treatment and scientific research design of HF.
Collapse
Affiliation(s)
- Zheqin Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shenghua Lu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Sisi Dai
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Lu J, Wu Y, Zhan S, Zhong Y, Guo Y, Gao J, Zhang B, Dong X, Che J, Xu Y. A Microenvironment-responsive small-molecule probe and application in quick acute myocardial infarction imaging. Talanta 2024; 270:125571. [PMID: 38154354 DOI: 10.1016/j.talanta.2023.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.
Collapse
Affiliation(s)
- Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
6
|
Wang X, Gaur M, Mounzih K, Rodriguez HJ, Qiu H, Chen M, Yan L, Cooper BA, Narayan S, Derakhshandeh R, Rao P, Han DD, Nabavizadeh P, Springer ML, John CM. Inhibition of galectin-3 post-infarction impedes progressive fibrosis by regulating inflammatory profibrotic cascades. Cardiovasc Res 2023; 119:2536-2549. [PMID: 37602717 PMCID: PMC10676456 DOI: 10.1093/cvr/cvad116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/02/2023] [Accepted: 05/12/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS Acute myocardial infarction (MI) causes inflammation, collagen deposition, and reparative fibrosis in response to myocyte death and, subsequently, a pathological myocardial remodelling process characterized by excessive interstitial fibrosis, driving heart failure (HF). Nonetheless, how or when to limit excessive fibrosis for therapeutic purposes remains uncertain. Galectin-3, a major mediator of organ fibrosis, promotes cardiac fibrosis and remodelling. We performed a preclinical assessment of a protein inhibitor of galectin-3 (its C-terminal domain, Gal-3C) to limit excessive fibrosis resulting from MI and prevent ventricular enlargement and HF. METHODS AND RESULTS Gal-3C was produced by enzymatic cleavage of full-length galectin-3 or by direct expression of the truncated form in Escherichia coli. Gal-3C was intravenously administered for 7 days in acute MI models of young and aged rats, starting either pre-MI or 4 days post-MI. Echocardiography, haemodynamics, histology, and molecular and cellular analyses were performed to assess post-MI cardiac functionality and pathological fibrotic progression. Gal-3C profoundly benefitted left ventricular ejection fraction, end-systolic and end-diastolic volumes, haemodynamic parameters, infarct scar size, and interstitial fibrosis, with better therapeutic efficacy than losartan and spironolactone monotherapies over the 56-day study. Gal-3C therapy in post-MI aged rats substantially improved pump function and attenuated ventricular dilation, preventing progressive HF. Gal-3C in vitro treatment of M2-polarized macrophage-like cells reduced their M2-phenotypic expression of arginase-1 and interleukin-10. Gal-3C inhibited M2 polarization of cardiac macrophages during reparative response post-MI. Gal-3C impeded progressive fibrosis post-MI by down-regulating galectin-3-mediated profibrotic signalling cascades including a reduction in endogenous arginase-1 and inducible nitric oxide synthase (iNOS). CONCLUSION Gal-3C treatment improved long-term cardiac function post-MI by reduction in the wound-healing response, and inhibition of inflammatory fibrogenic signalling to avert an augmentation of fibrosis in the periinfarct region. Thus, Gal-3C treatment prevented the infarcted heart from extensive fibrosis that accelerates the development of HF, providing a potential targeted therapy.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Meenakshi Gaur
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Khalid Mounzih
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Hilda J Rodriguez
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Ming Chen
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Liqiu Yan
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Brian A Cooper
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Shilpa Narayan
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Poonam Rao
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Daniel D Han
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Constance M John
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
- Department of Laboratory Medicine, University of California, San Francisco, 185 Berry Street, Suite 100, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Sheikh Beig Goharrizi MA, Ghodsi S, Mokhtari M, Moravveji SS. Non-invasive STEMI-related biomarkers based on meta-analysis and gene prioritization. Comput Biol Med 2023; 161:106997. [PMID: 37216774 DOI: 10.1016/j.compbiomed.2023.106997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/01/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Acute ST-Segment Myocardial infarction (STEMI) is a common cardiovascular issue with a considerable burden of the disease. The underlying genetic basis and non-invasive markers were not well-established. METHODS Here, we implemented a systematic literature review and meta-analyses integration methods on 217 STEMI patients and 72 normal individuals to prioritize and detect the STEMI-related non-invasive markers. Five high-scored genes were experimentally assessed on 10 STEMI patients and 9 healthy controls. Finally, the presence of co-expressed nodes of top-score genes was explored. RESULTS The differential expression of ARGL, CLEC4E, and EIF3D were significant for Iranian patients. The ROC curve for gene CLEC4E revealed an AUC (95% CI) of 0.786 (0.686-0.886) in the prediction of STEMI. The Cox-PH model was fitted to stratify high/low risk heart failure progression (CI-index = 0.83, Likelihood-Ratio-Test = 3e-10). The SI00AI2 was a common biomarker between STEMI and NSTEMI patients. CONCLUSIONS In conclusion, the high-scored genes and prognostic model could be applicable for Iranian patients.
Collapse
Affiliation(s)
| | - Saeed Ghodsi
- Department of Cardiology, Sina Hospital, Tehran University of Medical Sciences Tehran, Iran
| | - Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran; Laboratory of Personalized Precision Medicine, Bioinformatics Research Institute, Tehran, Iran
| | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
8
|
Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Dis 2022; 8:413. [PMID: 36209203 PMCID: PMC9547100 DOI: 10.1038/s41420-022-01200-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Arginase, a binuclear manganese metalloenzyme in the urea, catalyzes the hydrolysis of L-arginine to urea and L-ornithine. Both isoforms, arginase 1 and arginase 2 perform significant roles in the regulation of cellular functions in cardiovascular system, such as senescence, apoptosis, proliferation, inflammation, and autophagy, via a variety of mechanisms, including regulating L-arginine metabolism and activating multiple signal pathways. Furthermore, abnormal arginase activity contributes to the initiation and progression of a variety of CVDs. Therefore, targeting arginase may be a novel and promising approach for CVDs treatment. In this review, we give a comprehensive overview of the physiological and biological roles of arginase in a variety of CVDs, revealing the underlying mechanisms of arginase mediating vascular and cardiac function, as well as shedding light on the novel and promising therapeutic approaches for CVDs therapy in individuals.
Collapse
Affiliation(s)
- Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China.
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|