1
|
Bialonczyk U, Debowska M, Dai L, Qureshi AR, Bobrowski L, Soderberg M, Lindholm B, Stenvinkel P, Lukaszuk T, Poleszczuk J. Balancing accuracy and cost in machine learning models for detecting medial vascular calcification in chronic kidney disease: a pilot study. Sci Rep 2025; 15:17453. [PMID: 40394086 PMCID: PMC12092776 DOI: 10.1038/s41598-025-02457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Machine learning algorithms that integrate multiple biomarkers are increasingly used in disease detection, yet economic considerations are often overlooked. Medial vascular calcification (mVC), a pathology associated with elevated cardiovascular risk in chronic kidney disease (CKD), requires cost-effective diagnostic approaches. This pilot study evaluated the cost-effectiveness of machine learning models for mVC detection using traditional risk markers and circulating biomarkers in 152 CKD patients undergoing living donor kidney transplantation. Patients were classified as having no/minimal (n = 93) or moderate/extensive (n = 59) mVC. Five classification frameworks with automatic variable selection identified predictors of mVC. Age and copeptin were selected by all algorithms, while diabetes, male sex, choline, and osteoprotegerin were chosen by four methods. The number of features selected ranged from 5 to 21. Although accuracy differences among classifiers were limited to 3%, models using more features nearly tripled the procedure's cost. By incorporating the incremental cost-effectiveness ratio, the study highlighted significant disparities in performance versus cost among classifiers. The present findings suggest that machine learning has the potential to complement imaging techniques for mVC detection and uncover novel biomarkers. However, modest performance improvements may not justify higher costs, underscoring the importance of considering cost-effectiveness when selecting classification models.
Collapse
Affiliation(s)
- Urszula Bialonczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
| | - Malgorzata Debowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Leon Bobrowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Magnus Soderberg
- Pathology, Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Gothenburg, Sweden
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tomasz Lukaszuk
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Yan YF, Feng Y, Wang SM, Fang F, Chen HY, Zhen MX, Ji YQ, Wu SD. Potential actions of capsaicin for preventing vascular calcification of vascular smooth muscle cells in vitro and in vivo. Heliyon 2024; 10:e28021. [PMID: 38524547 PMCID: PMC10958412 DOI: 10.1016/j.heliyon.2024.e28021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na2HPO4 and 50 μg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and β-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/β-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.
Collapse
Affiliation(s)
- Yin-Fang Yan
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yue Feng
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Si-Min Wang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Fei Fang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Hong-Yan Chen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Ming-Xia Zhen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yu-Qiang Ji
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Song-Di Wu
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Leotta C, Hernandez L, Tothova L, Arefin S, Ciceri P, Cozzolino MG, Barany P, Chromek M, Stenvinkel P, Kublickiene K. Levels of Cell-Free DNA in Kidney Failure Patients before and after Renal Transplantation. Cells 2023; 12:2774. [PMID: 38132094 PMCID: PMC10741614 DOI: 10.3390/cells12242774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has diverse applications in oncological, prenatal, toxicological, cardiovascular, and autoimmune diseases, diagnostics, and organ transplantation. In particular, mitochondrial cfDNA (mt-cfDNA) is associated with inflammation and linked to early vascular ageing (EVA) in end-stage kidney failure (ESKF), which could be a noninvasive marker for graft rejection and organ damage. Plasma samples from 44 ESKF patients, of whom half (n = 22) underwent either conservative therapy (non-HD) or hemodialysis (HD) before kidney transplantation (KT). These samples were analyzed at baseline and two years after KT. cfDNA was extracted from plasma and quantified using the fluorometric method. qPCR was used to quantify and differentiate the fractions of mt-cfDNA and nuclear cfDNA (nc-cfDNA). mt-cfDNA levels in KT patients decreased significantly from baseline to two years post-KT (p < 0.0268), while levels of total cfDNA and nc-cfDNA did not differ. Depending on therapy modality (HD vs. non-HD) before KT, total cfDNA levels were higher in HD patients at both baseline (p = 0.0133) and two years post-KT (p = 0.0421), while nc-cfDNA levels were higher in HD only at baseline (p = 0.0079). Males showed a nonsignificant trend of higher cfDNA levels. Patients with assessed vascular fibrosis (p = 0.0068), either alone or in combination with calcification plus fibrosis, showed reduced mt-cfDNA post-KT (p = 0.0195). Changes in mt-cfDNA levels suggests the impact of KT on the inflammatory state of ESKF, as evidenced via its correlation with high sensitivity C-reactive protein after KT. Further studies are warranted to assess if cfDNA could serve as a noninvasive method for monitoring the response to organ transplantation and even for amelioration of EVA status per se.
Collapse
Affiliation(s)
- Chiara Leotta
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo Hospital Milan, University of Milan, 20142 Milan, Italy (M.G.C.)
| | - Leah Hernandez
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Samsul Arefin
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo Hospital Milan, University of Milan, 20142 Milan, Italy (M.G.C.)
| | - Mario Gennaro Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo Hospital Milan, University of Milan, 20142 Milan, Italy (M.G.C.)
| | - Peter Barany
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Milan Chromek
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
- Division of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| | - Karolina Kublickiene
- Division of Renal Medicine, Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden; (C.L.); (L.H.); (P.B.); (M.C.)
| |
Collapse
|
4
|
Hobson S, Qureshi AR, Ripswedan J, Wennberg L, de Loor H, Ebert T, Söderberg M, Evenepoel P, Stenvinkel P, Kublickiene K. Phenylacetylglutamine and trimethylamine N-oxide: Two uremic players, different actions. Eur J Clin Invest 2023; 53:e14074. [PMID: 37548021 PMCID: PMC10909455 DOI: 10.1111/eci.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) patients exhibit a heightened cardiovascular (CV) risk which may be partially explained by increased medial vascular calcification. Although gut-derived uremic toxin trimethylamine N-oxide (TMAO) is associated with calcium-phosphate deposition, studies investigating phenylacetylglutamine's (PAG) pro-calcifying potential are missing. METHODS The effect of TMAO and PAG in vascular calcification was investigated using 120 kidney failure patients undergoing living-donor kidney transplantation (LD-KTx), in an observational, cross-sectional manner. Uremic toxin concentrations were related to coronary artery calcification (CAC) score, epigastric artery calcification score, and markers of established non-traditional risk factors that constitute to the 'perfect storm' that drives early vascular aging in this patient population. Vascular smooth muscle cells were incubated with TMAO or PAG to determine their calcifying effects in vitro and analyse associated pathways by which these toxins may promote vascular calcification. RESULTS TMAO, but not PAG, was independently associated with CAC score after adjustment for CKD-related risk factors in kidney failure patients. Neither toxin was associated with epigastric artery calcification score; however, PAG was independently, positively associated with 8-hydroxydeoxyguanosine. Similarly, TMAO, but not PAG, promoted calcium-phosphate deposition in vitro, while both uremic solutes induced oxidative stress. CONCLUSIONS In conclusion, our translational data confirm TMAO's pro-calcifying effects, but both toxins induced free radical production detrimental to vascular maintenance. Our findings suggest these gut-derived uremic toxins have different actions on the vessel wall and therapeutically targeting TMAO may help reduce CV-related mortality in CKD.
Collapse
Affiliation(s)
- Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jonaz Ripswedan
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
- Unit of radiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Henriette de Loor
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Magnus Söderberg
- Pathology, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, Gothenburg, Sweden
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Gubensek J. The Role of Ultrasound Examination in the Assessment of Suitability of Calcified Arteries for Vascular Access Creation-Mini Review. Diagnostics (Basel) 2023; 13:2660. [PMID: 37627919 PMCID: PMC10453329 DOI: 10.3390/diagnostics13162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Arterial calcifications are present in 20-40% of patients with end-stage kidney disease and are more frequent among the elderly and diabetics. They reduce the possibility of arterio-venous fistula (AVF) formation and maturation and increase the likelihood of complications, especially distal ischemia. This review focuses on methods for detecting arterial calcifications and assessing the suitability of calcified arteries for providing inflow before the construction of an AVF. The importance of a clinical examination is stressed. A grading system is proposed for quantifying the severity of calcifications in the arteries of the arm with B-mode and Doppler ultrasound exams. Functional tests to assess the suitability of the artery to provide adequate inflow to the AVF are discussed, including Doppler indices (peak systolic velocity and resistive index during reactive hyperemia). Possible predictors of the development of distal ischemia are discussed (finger pressure, digital brachial index, acceleration and acceleration time), as well as the outcomes of AVFs placed on calcified arteries. It is concluded that a noninvasive ultrasound examination is probably the best tool for a morphologic and functional assessment of the arteries. An arterial assessment is of utmost importance if we are to create distal radiocephalic AVFs in our elderly patients whenever possible without burdening them with futile surgical attempts.
Collapse
Affiliation(s)
- Jakob Gubensek
- Center for Acute and Complicated Dialysis and Vascular Access, Department of Nephrology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; ; Tel.: +386-1-522-3112; Fax: +386-1-522-2292
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
8
|
Li Y, He S, Wang C, Jian W, Shen X, Shi Y, Liu J. Fibroblast growth factor 21 inhibits vascular calcification by ameliorating oxidative stress of vascular smooth muscle cells. Biochem Biophys Res Commun 2023; 650:39-46. [PMID: 36773338 DOI: 10.1016/j.bbrc.2023.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Vascular calcification is very common in clinical. Severe vascular calcification is related to the occurrence of adverse events. Oxidative stress (OS) plays a pathophysiological role in the formation of vascular calcification. Previous studies have demonstrated that fibroblast growth factor 21(FGF21) could inhibit vascular calcification both in vivo and in vitro. FGF21 has also been proved to promote the recovery of superoxide dismutase (SOD) and thereby alleviate OS. Thus, our assumption was that FGF21 inhibit vascular calcification partly by restoring the level of antioxidant SOD and reducing OS. In this study, we established the vascular calcification by 5/6 nephrectomy plus high phosphate diet chronic kidney disease (CKD) model. The results showed the receptor of FGF21, fibroblast growth factor receptor 1 (FGFR1) and βKlotho in the aorta increased in CKD group, and mainly located in the media of the artery. Ulteriorly, immunofluorescence (IF) and IHC staining showed that FGFR1 and βKlotho mainly existed in arterial vascular smooth muscle cells (VSMCs). When FGF21 was knock out, the calcification was more severe in FGF21 KO + CKD mice, compared to wild type (WT)+ CKD mice. The transcriptional level of vascular calcification-related genes was significantly higher in FGF21 KO mice than control group. The dihydroethidium (DHE) staining reactive oxygen species (ROS) level in the CKD group was higher compared to the control group, but lower in FGF21 KO + CKD group, and the transcriptional level of SOD1 and SOD2 in FGF21 KO + CKD group was significantly higher than that in CKD group. In conclusion, FGF21 could inhibit vascular calcification, partly by restoring the level of antioxidant SOD and reducing vascular oxidative stress. This study provides further evidence for FGF21 as a candidate drug for cardiovascular protective agents.
Collapse
Affiliation(s)
- Yingkai Li
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Songyuan He
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Cong Wang
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Wen Jian
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Xueqian Shen
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Yuchen Shi
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| | - Jinghua Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
9
|
Hernandez L, Ward LJ, Arefin S, Barany P, Wennberg L, Söderberg M, Bruno S, Cantaluppi V, Stenvinkel P, Kublickiene K. Blood–Brain Barrier Biomarkers before and after Kidney Transplantation. Int J Mol Sci 2023; 24:ijms24076628. [PMID: 37047601 PMCID: PMC10095132 DOI: 10.3390/ijms24076628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Kidney transplantation (KT) may improve the neurological status of chronic kidney disease (CKD) patients, reflected by the altered levels of circulating BBB-specific biomarkers. This study compares the levels of neuron specific enolase (NSE), brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), and circulating plasma extracellular vesicles (EVs) in kidney-failure patients before KT and at a two-year follow up. Using ELISA, NSE, BDNF, and NfL levels were measured in the plasma of 74 living-donor KT patients. Plasma EVs were isolated with ultracentrifugation, and characterized for concentration/size and surface protein expression using flow cytometry from a subset of 25 patients. Lower NSE levels, and higher BDNF and NfL were observed at the two-year follow-up compared to the baseline (p < 0.05). Male patients had significantly higher BDNF levels compared to those of females. BBB biomarkers correlated with the baseline lipid profile and with glucose, vitamin D, and inflammation markers after KT. BBB surrogate marker changes in the microcirculation of early vascular aging phenotype patients with calcification and/or fibrosis were observed only in NSE and BDNF. CD31+ microparticles from endothelial cells expressing inflammatory markers such as CD40 and integrins were significantly reduced after KT. KT may, thus, improve the neurological status of CKD patients, as reflected by changes in BBB-specific biomarkers.
Collapse
Affiliation(s)
- Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Liam J. Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Wennberg
- Department of Transplantation Surgery, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Magnus Söderberg
- Department of Pathology, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, 431 83 Gothenburg, Sweden
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10124 Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), “Maggiore della Carita” University Hospital, 28100 Novara, Italy
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|