1
|
Nanayakkara ND, Meusel LA, Anderson ND, Chen JJ. Estimation of cerebrovascular reactivity amplitude and lag using breath-holding fMRI and the global BOLD signal: Application in diabetes and hypertension. J Cereb Blood Flow Metab 2025; 45:459-475. [PMID: 39224949 PMCID: PMC11572012 DOI: 10.1177/0271678x241270420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate a data-driven approach for estimating cerebrovascular reactivity (CVR) amplitude and lag from breathhold (BH) fMRI data alone. Our approach employs a frequency-domain approach that is independent of external recordings. CVR amplitude is estimated from the BOLD frequency spectrum and CVR lag is estimated from the Fourier phase using the global-mean BOLD signal as reference. Unlike referencing to external recordings, these lags are specific to the brain. We demonstrated our method in detecting regional CVR amplitude and lag differences across healthy (CTL), hypertensive (HT) and hypertension-plus-type-2-diabetes (HT + DM) groups of similar ages and sex ratios, with a total N of 49. We found CVR amplitude to be significantly higher in CTL compared to HT + DM, with minimal difference between CTL and HT. Also, voxelwise CVR lag estimated in the Fourier domain is a more sensitive marker of vascular dysfunction than CVR amplitude. CVR lag in HT is significantly shorter than in CTL, with minimal difference between CTL and HT + DM. Our results support the importance of joint CVR amplitude and lag assessments in clinical applications.
Collapse
Affiliation(s)
- Nuwan D Nanayakkara
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - Liesel-Ann Meusel
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - Nicole D Anderson
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Song D, Fan G, Chang M. Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI. Cancers (Basel) 2024; 17:74. [PMID: 39796702 PMCID: PMC11719598 DOI: 10.3390/cancers17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
Collapse
Affiliation(s)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| |
Collapse
|
3
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Zhao F, Wang X, Zhu W, Zhao D, Ye C, Guo Y, Dou Y. Low-dose pleiotropic radiosensitive nanoformulations for three-pronged radiochemotherapy of hypoxic brain glioblastoma under BOLD/DWI monitoring. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Hypoxia-mediated radioresistance is the main obstacle to the successful treatment of glioblastoma (GBM). Enhancing hypoxic radiosensitivity and alleviating tumor hypoxia are both effective means to improve therapeutic efficacy, and the combination of the two is highly desirable and meaningful.
Results
Herein, we construct a low-dose pleiotropic radiosensitive nanoformulation consisting of a high-Z atomic nanocrystal core and mesoporous silica shell, surface-modified with angiopep-2 (ANG) peptide and loaded with nitric oxide (NO) donor and hypoxia-activated prodrug (AQ4N). Benefiting from ANG-mediated transcytosis, this nanoformulation can efficiently cross the BBB and accumulate preferentially in the brain. Low-dose radiation triggers this nanoformulation to exert a three-pronged synergistic therapeutic effect through high-Z-atom-dependent dose deposition enhancement, NO-mediated hypoxia relief, and AQ4N-induced hypoxia-selective killing, thereby significantly inhibiting GBM in situ growth while prolonging survival and maintaining stable body weight in the glioma-bearing mice. Meanwhile, the proposed in vivo 9.4 T BOLD/DWI can realize real-time dynamic assessment of local oxygen supply and radiosensitivity to monitor the therapeutic response of GBM.
Conclusions
This work provides a promising alternative for hypoxia-specific GBM-targeted comprehensive therapy, noninvasive monitoring, and precise prognosis.
Graphical Abstract
Collapse
|
5
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
6
|
Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022; 16:982963. [PMID: 36213203 PMCID: PMC9537466 DOI: 10.3389/fncir.2022.982963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
A plethora of neural centers in the central nervous system control the fundamental respiratory pattern. This control is ensured by neurons that act as pacemakers, modulating activity through chemical control driven by changes in the O2/CO2 balance. Most of the respiratory neural centers are located in the brainstem, but difficult to localize on magnetic resonance imaging (MRI) due to their small size, lack of visually-detectable borders with neighboring areas, and significant physiological noise hampering detection of its activity with functional MRI (fMRI). Yet, several approaches make it possible to study the normal response to different abnormal stimuli or conditions such as CO2 inhalation, induced hypercapnia, volitional apnea, induced hypoxia etc. This review provides a comprehensive overview of the majority of available studies on central respiratory control in humans.
Collapse
Affiliation(s)
- Carolina Ciumas
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
8
|
Stumpo V, Sebök M, van Niftrik CHB, Seystahl K, Hainc N, Kulcsar Z, Weller M, Regli L, Fierstra J. Feasibility of glioblastoma tissue response mapping with physiologic BOLD imaging using precise oxygen and carbon dioxide challenge. MAGMA (NEW YORK, N.Y.) 2022; 35:29-44. [PMID: 34874499 DOI: 10.1007/s10334-021-00980-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Innovative physiologic MRI development focuses on depiction of heterogenous vascular and metabolic features in glioblastoma. For this feasibility study, we employed blood oxygenation level-dependent (BOLD) MRI with standardized and precise carbon dioxide (CO2) and oxygen (O2) modulation to investigate specific tumor tissue response patterns in patients with newly diagnosed glioblastoma. MATERIALS AND METHODS Seven newly diagnosed untreated patients with suspected glioblastoma were prospectively included to undergo a BOLD study with combined CO2 and O2 standardized protocol. %BOLD signal change/mmHg during hypercapnic, hypoxic, and hyperoxic stimulus was calculated in the whole brain, tumor lesion and segmented volumes of interest (VOI) [contrast-enhancing (CE) - tumor, necrosis and edema] to analyze their tissue response patterns. RESULTS Quantification of BOLD signal change after gas challenges can be used to identify specific responses to standardized stimuli in glioblastoma patients. Integration of this approach with automatic VOI segmentation grants improved characterization of tumor subzones and edema. Magnitude of BOLD signal change during the 3 stimuli can be visualized at voxel precision through color-coded maps overlayed onto whole brain and identified VOIs. CONCLUSIONS Our preliminary investigation shows good feasibility of BOLD with standardized and precise CO2 and O2 modulation as an emerging physiologic imaging technique to detail specific glioblastoma characteristics. The unique tissue response patterns generated can be further investigated to better detail glioblastoma lesions and gauge treatment response.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland. .,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Seystahl
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolin Hainc
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Fesharaki NJ, Mathew AB, Mathis JR, Huddleston WE, Reuss JL, Pillai JJ, DeYoe EA. Effects of Thresholding on Voxel-Wise Correspondence of Breath-Hold and Resting-State Maps of Cerebrovascular Reactivity. Front Neurosci 2021; 15:654957. [PMID: 34504411 PMCID: PMC8421787 DOI: 10.3389/fnins.2021.654957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging for presurgical brain mapping enables neurosurgeons to identify viable tissue near a site of operable pathology which might be at risk of surgery-induced damage. However, focal brain pathology (e.g., tumors) may selectively disrupt neurovascular coupling while leaving the underlying neurons functionally intact. Such neurovascular uncoupling can result in false negatives on brain activation maps thereby compromising their use for surgical planning. One way to detect potential neurovascular uncoupling is to map cerebrovascular reactivity using either an active breath-hold challenge or a passive resting-state scan. The equivalence of these two methods has yet to be fully established, especially at a voxel level of resolution. To quantitatively compare breath-hold and resting-state maps of cerebrovascular reactivity, we first identified threshold settings that optimized coverage of gray matter while minimizing false responses in white matter. When so optimized, the resting-state metric had moderately better gray matter coverage and specificity. We then assessed the spatial correspondence between the two metrics within cortical gray matter, again, across a wide range of thresholds. Optimal spatial correspondence was strongly dependent on threshold settings which if improperly set tended to produce statistically biased maps. When optimized, the two CVR maps did have moderately good correspondence with each other (mean accuracy of 73.6%). Our results show that while the breath-hold and resting-state maps may appear qualitatively similar they are not quantitatively identical at a voxel level of resolution.
Collapse
Affiliation(s)
- Nooshin J Fesharaki
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amy B Mathew
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jedidiah R Mathis
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy E Huddleston
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James L Reuss
- Prism Clinical Imaging, Inc., Milwaukee, WI, United States
| | - Jay J Pillai
- Neuroradiology Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Petridis PD, Horenstein C, Pereira B, Wu P, Samanamud J, Marie T, Boyett D, Sudhakar T, Sheth SA, McKhann GM, Sisti MB, Bruce JN, Canoll P, Grinband J. BOLD Asynchrony Elucidates Tumor Burden in IDH-Mutated Gliomas. Neuro Oncol 2021; 24:78-87. [PMID: 34214170 DOI: 10.1093/neuonc/noab154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard of care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard of care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS BOLD asynchrony was directly related to total cellularity (H&E, p = 4 x 10 -5), tumor density (IDH1, p = 4 x 10 -5; Sox2, p = 3 x 10 -5), cellular proliferation (Ki67, p = 0.002), and as well as inversely related to neuronal density (NeuN, p = 1 x 10 -4). CONCLUSIONS Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.
Collapse
Affiliation(s)
- Petros D Petridis
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA.,Department of Psychiatry, New York University, New York, New York, USA
| | - Craig Horenstein
- Department of Radiology, School of Medicine at Hofstra/Northwell, Manhasset, New York USA
| | - Brianna Pereira
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Peter Wu
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Jorge Samanamud
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tamara Marie
- Department of Pediatrics Oncology, Columbia University, New York, New York USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University, New York, New York USA
| | - Jack Grinband
- Department of Radiology, Columbia University, New York, New York, USA.,Department of Psychiatry, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Stickland RC, Zvolanek KM, Moia S, Ayyagari A, Caballero-Gaudes C, Bright MG. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function. Neuroimage 2021; 239:118306. [PMID: 34175427 PMCID: PMC8552969 DOI: 10.1016/j.neuroimage.2021.118306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a CO2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemodynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural activity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting-state data segments, and in data segments which added a 2–3 minute breathing task to the start of a resting-state segment. Two different breathing tasks were used to induce fluctuations in arterial CO2 pressure: a breath-hold task to induce hypercapnia (CO2 increase) and a cued deep breathing task to induce hypocapnia (CO2 decrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO2 by systematically shifting the CO2 regressor in time to optimize the model fit. This optimization inherently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant relationship between CO2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemodynamic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider applications for fMRI denoising and interpretation.
Collapse
Affiliation(s)
- Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain; University of the Basque Country EHU/UPV, Donostia, Gipuzkoa, Spain
| | - Apoorva Ayyagari
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
12
|
Distinct Cerebrovascular Reactivity Patterns for Brain Radiation Necrosis. Cancers (Basel) 2021; 13:cancers13081840. [PMID: 33924308 PMCID: PMC8069508 DOI: 10.3390/cancers13081840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Current imaging-based discrimination between radiation necrosis versus recurrent glioblastoma contrast-enhancing lesions remains imprecise but is paramount for prognostic and therapeutic evaluation. We examined whether patients with radiation necrosis exhibit distinct patterns of blood oxygenation-level dependent fMRI cerebrovascular reactivity (BOLD-CVR) as the first step to better distinguishing patients with radiation necrosis from recurrent glioblastoma compared with patients with newly diagnosed glioblastoma before surgery and radiotherapy. Methods: Eight consecutive patients with primary and secondary brain tumors and a multidisciplinary clinical and radiological diagnosis of radiation necrosis, and fourteen patients with a first diagnosis of glioblastoma underwent BOLD-CVR mapping. For all these patients, the contrast-enhancing lesion was derived from high-resolution T1-weighted MRI and rendered the volume-of-interest (VOI). From this primary VOI, additional 3 mm concentric expanding VOIs up to 30 mm were created for a detailed perilesional BOLD-CVR tissue analysis between the two groups. Receiver operating characteristic curves assessed the discriminative properties of BOLD-CVR for both groups. Results: Mean intralesional BOLD-CVR values were markedly lower in radiation necrosis than in glioblastoma contrast-enhancing lesions (0.001 ± 0.06 vs. 0.057 ± 0.05; p = 0.04). Perilesionally, a characteristic BOLD-CVR pattern was observed for radiation necrosis and glioblastoma patients, with an improvement of BOLD-CVR values in the radiation necrosis group and persisting lower perilesional BOLD-CVR values in glioblastoma patients. The ROC analysis discriminated against both groups when these two parameters were analyzed together (area under the curve: 0.85, 95% CI: 0.65-1.00). Conclusions: In this preliminary analysis, distinctive intralesional and perilesional BOLD-cerebrovascular reactivity patterns are found for radiation necrosis.
Collapse
|
13
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
15
|
Muscas G, van Niftrik CHB, Sebök M, Seystahl K, Piccirelli M, Stippich C, Weller M, Regli L, Fierstra J. Hemodynamic investigation of peritumoral impaired blood oxygenation-level dependent cerebrovascular reactivity in patients with diffuse glioma. Magn Reson Imaging 2020; 70:50-56. [PMID: 32302735 DOI: 10.1016/j.mri.2020.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The presence of peritumorally impaired blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) has been unequivocally demonstrated in patients with diffuse glioma, and may have value to better identify tumor infiltration zone. Since BOLD-CVR does not measure hemodynamic changes directly, we performed additional MR perfusion studies to better characterize the peritumoral hemodynamic environment. METHODS Seventeen patients with WHO grade III and IV diffuse glioma underwent high resolution advanced hemodynamic MR imaging including BOLD-CVR and MR perfusion. The obtained multiparametric hemodynamic factors (i.e., regional cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), mean transit time (MTT), time-to-peak (TTP) and BOLD-CVR, were analyzed within 10 concentric expanding 3 mm volumes of interest (VOIs) up to 30 mm from the tumor tissue mask. RESULTS BOLD-CVR impairment was found within the tumor tissue mask and the peritumoral VOIs up to 21 mm as compared to the contralateral flipped CVR analysis (p<0.05). In the affected hemisphere, we observed positive spatial correlations including all VOIs between BOLD-CVR and rCBV values (r=0.27; p<0.001), rCBF (r=0.42; p<0.001) and a negative correlation between BOLD-CVR and TTP (r=-0.47; p<0.001). CONCLUSIONS Peritumorally impaired BOLD-CVR is associated with concomitant hemodynamic alterations with severity correlating to tumor volume. The distribution of these multiparametric hemodynamic MRI patterns may be considered for future studies characterizing the hemodynamic peritumoral environment, thereby better identifying the extent of tumor infiltration.
Collapse
Affiliation(s)
- Giovanni Muscas
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland; Department of Neurosurgery, Careggi University Hospital, Florence, Italy
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Martina Sebök
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Katharina Seystahl
- Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Christoph Stippich
- Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Sun H, Vachha B, Laino ME, Jenabi M, Flynn JR, Zhang Z, Holodny AI, Peck KK. Decreased Hand Motor Resting-State Functional Connectivity in Patients with Glioma: Analysis of Factors including Neurovascular Uncoupling. Radiology 2020; 294:610-621. [PMID: 31934827 DOI: 10.1148/radiol.2019190089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Resting-state functional MRI holds substantial potential for clinical application, but limitations exist in current understanding of how tumors exert local effects on resting-state functional MRI readings. Purpose To investigate the association between tumors, tumor characteristics, and changes in resting-state connectivity, to explore neurovascular uncoupling as a mechanism underlying these changes, and to evaluate seeding methodologies as a clinical tool. Materials and Methods Institutional review board approval was obtained for this HIPAA-compliant observational retrospective study of patients with glioma who underwent MRI and resting-state functional MRI between January 2016 and July 2017. Interhemispheric symmetry of connectivity was assessed in the hand motor region, incorporating tumor position, perfusion, grade, and connectivity generated from seed-based correlation. Statistical analysis was performed by using one-tailed t tests, Wilcoxon rank sum tests, one-way analysis of variance, Pearson correlation, and Spearman rank correlation, with significance at P < .05. Results Data in a total of 45 patients with glioma (mean age, 51.3 years ± 14.3 [standard deviation]) were compared with those in 10 healthy control subjects (mean age, 50.3 years ± 17.2). Patients showed loss of symmetry in measures of hand motor resting-state connectivity compared with control subjects (P < .05). Tumor distance from the ipsilateral hand motor (IHM) region correlated with the degree (R = 0.38, P = .01) and strength (R = 0.33, P = .03) of resting-state connectivity. In patients with World Health Organization grade IV glioblastomas 40 mm or less from the IHM region, loss of symmetry in strength of resting-state connectivity was correlated with tumor perfusion (R = 0.74, P < .01). In patients with gliomas 40 mm or less from the IHM region, seeding the nontumor hemisphere yielded less asymmetric hand motor resting-state connectivity than seeding the tumor hemisphere (connectivity seeded:contralateral = 1.34 nontumor vs 1.38 tumor hemisphere seeded; P = .03, false discovery rate threshold = 0.01). Conclusion Hand motor resting-state connectivity was less symmetrical in a tumor distance-dependent manner in patients with glioma. Differences in resting-state connectivity may be false-negative results driven by a neurovascular uncoupling mechanism. Seeding from the nontumor hemisphere may attenuate asymmetry in patients with tumors near ipsilateral hand motor cortices. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Herie Sun
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Behroze Vachha
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Maria E Laino
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Mehrnaz Jenabi
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Jessica R Flynn
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Zhigang Zhang
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Andrei I Holodny
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| | - Kyung K Peck
- From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.)
| |
Collapse
|
17
|
Zhang L. Glioma characterization based on magnetic resonance imaging: Challenge overview and future perspective. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Gore JC, Li M, Gao Y, Wu TL, Schilling KG, Huang Y, Mishra A, Newton AT, Rogers BP, Chen LM, Anderson AW, Ding Z. Functional MRI and resting state connectivity in white matter - a mini-review. Magn Reson Imaging 2019; 63:1-11. [PMID: 31376477 DOI: 10.1016/j.mri.2019.07.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Functional MRI (fMRI) signals are robustly detectable in white matter (WM) but they have been largely ignored in the fMRI literature. Their nature, interpretation, and relevance as potential indicators of brain function remain under explored and even controversial. Blood oxygenation level dependent (BOLD) contrast has for over 25 years been exploited for detecting localized neural activity in the cortex using fMRI. While BOLD signals have been reliably detected in grey matter (GM) in a very large number of studies, such signals have rarely been reported from WM. However, it is clear from our own and other studies that although BOLD effects are weaker in WM, using appropriate detection and analysis methods they are robustly detectable both in response to stimuli and in a resting state. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both GM and WM, and their relative low frequency (0.01-0.1 Hz) signal powers are comparable. They also vary with baseline neural activity e.g. as induced by different levels of anesthesia, and alter in response to a stimulus. In previous work we reported that BOLD signals in WM in a resting state exhibit anisotropic temporal correlations with neighboring voxels. On the basis of these findings, we derived functional correlation tensors that quantify the correlational anisotropy in WM BOLD signals. We found that, along many WM tracts, the directional preferences of these functional correlation tensors in a resting state are grossly consistent with those revealed by diffusion tensors, and that external stimuli tend to enhance visualization of specific and relevant fiber pathways. These findings support the proposition that variations in WM BOLD signals represent tract-specific responses to neural activity. We have more recently shown that sensory stimulations induce explicit BOLD responses along parts of the projection fiber pathways, and that task-related BOLD changes in WM occur synchronously with the temporal pattern of stimuli. WM tracts also show a transient signal response following short stimuli analogous to but different from the hemodynamic response function (HRF) characteristic of GM. Thus there is converging and compelling evidence that WM exhibits both resting state fluctuations and stimulus-evoked BOLD signals very similar (albeit weaker) to those in GM. A number of studies from other laboratories have also reported reliable observations of WM activations. Detection of BOLD signals in WM has been enhanced by using specialized tasks or modified data analysis methods. In this mini-review we report summaries of some of our recent studies that provide evidence that BOLD signals in WM are related to brain functional activity and deserve greater attention by the neuroimaging community.
Collapse
Affiliation(s)
- John C Gore
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America; Department of Molecular Physiology and Biophysics, Vanderbilt University, United States of America; Department of Physics and Astronomy, Vanderbilt University, United States of America.
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Yali Huang
- Vanderbilt University Institute of Imaging Science, United States of America
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, United States of America
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States of America; Department of Biomedical Engineering, Vanderbilt University, United States of America
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, United States of America; Department of Electrical Engineering and Computer Science, Vanderbilt University, United States of America
| |
Collapse
|
19
|
Qian T, Zanchi D, Rodriguez C, Ackermann M, Giannakopoulos P, Haller S. Detecting Perfusion Pattern Based on the Background Low-Frequency Fluctuation in Resting-State Functional Magnetic Resonance Imaging Data and Its Influence on Resting-State Networks: An Iterative Postprocessing Approach. Brain Connect 2018; 7:627-634. [PMID: 29117709 DOI: 10.1089/brain.2017.0545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (RS-fMRI) is based on the assumption that the vascular response and the blood oxygenation level-dependent response are homogenous across the entire brain. However, this a priori hypothesis is not consistent with the well-known variability of cerebral vascular territories. To explore whether the RS networks are influenced by varied vascular speed in different vascular territories, we assessed the time-shift maps that give an estimate of the local timing of the vascular response and checked whether local differences in this timing have an impact on the estimates of RS networks. Two hundred seventeen elderly (≥60 years), healthy participants (73.74 ± 4.41 years, 143 females, 203 right handed) underwent one MRI examination, including an RS-fMRI session. After preprocessing, statistical analyses included time-shift analyses and RS-fMRI analyses using as regressor the delay maps obtained from the time-shift analyses. The functional connectivity map of default mode network (DMN) of each participant was then calculated by using the seed-to-voxel analysis in the REST toolbox. Faster cerebrovascular responses were notably present in the primary motor and somatosensory and peri-insular cortex, while slower responses were present in various regions, including notably the posterior cingulate cortex (PCC). Moreover, significant changes notably in the DMN, including medial prefrontal cortex (t = 11.95), PCC (t = 11.52), right middle temporal lobe (t = 10.72), and right angular gyrus (t = 10.88), were observed also taking into account the cerebrovascular delayed maps. As the most prominent example of the RS networks, DMN activation patterns change as a function of the cerebrovascular delay. These data suggest that a group correction for vascular maps in RS-fMRI measurements is essential to correctly depict functional differences and exclude potential confounding effects, notably in the elderly with increasing prevalence of vascular comorbidity.
Collapse
Affiliation(s)
- Tianyi Qian
- 1 MR Collaboration, Siemens Healthcare China , Beijing, China
| | - Davide Zanchi
- 2 Department of Psychiatry (UPK), University of Basel , Basel, Switzerland
| | - Cristelle Rodriguez
- 3 Department of Mental Health and Psychiatry, University Hospitals of Geneva , Geneva, Switzerland
| | - Marine Ackermann
- 3 Department of Mental Health and Psychiatry, University Hospitals of Geneva , Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- 3 Department of Mental Health and Psychiatry, University Hospitals of Geneva , Geneva, Switzerland .,4 Faculty of Medicine, University of Geneva , Geneva, Switzerland
| | - Sven Haller
- 4 Faculty of Medicine, University of Geneva , Geneva, Switzerland .,5 Affidea Carouge Radiologic Diagnostic Center , Geneva, Switzerland .,6 Department of Surgical Sciences, Radiology, Uppsala University , Uppsala, Sweden .,7 Department of Neuroradiology, University Hospital Freiburg , Freiburg im Breisgau, Germany
| |
Collapse
|
20
|
Englander ZK, Horenstein CI, Bowden SG, Chow DS, Otten ML, Lignelli A, Bruce JN, Canoll P, Grinband J. Extent of BOLD Vascular Dysregulation Is Greater in Diffuse Gliomas without Isocitrate Dehydrogenase 1 R132H Mutation. Radiology 2018; 287:965-972. [DOI: 10.1148/radiol.2017170790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Bowden SG, Gill BJA, Englander ZK, Horenstein CI, Zanazzi G, Chang PD, Samanamud J, Lignelli A, Bruce JN, Canoll P, Grinband J. Local Glioma Cells Are Associated with Vascular Dysregulation. AJNR Am J Neuroradiol 2018; 39:507-514. [PMID: 29371254 DOI: 10.3174/ajnr.a5526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Malignant glioma is a highly infiltrative malignancy that causes variable disruptions to the structure and function of the cerebrovasculature. While many of these structural disruptions have known correlative histopathologic alterations, the mechanisms underlying vascular dysfunction identified by resting-state blood oxygen level-dependent imaging are not yet known. The purpose of this study was to characterize the alterations that correlate with a blood oxygen level-dependent biomarker of vascular dysregulation. MATERIALS AND METHODS Thirty-two stereotactically localized biopsies were obtained from contrast-enhancing (n = 16) and nonenhancing (n = 16) regions during open surgical resection of malignant glioma in 17 patients. Preoperative resting-state blood oxygen level-dependent fMRI was used to evaluate the relationships between radiographic and histopathologic characteristics. Signal intensity for a blood oxygen level-dependent biomarker was compared with scores of tumor infiltration and microvascular proliferation as well as total cell and neuronal density. RESULTS Biopsies corresponded to a range of blood oxygen level-dependent signals, ranging from relatively normal (z = -4.79) to markedly abnormal (z = 8.84). Total cell density was directly related to blood oxygen level-dependent signal abnormality (P = .013, R2 = 0.19), while the neuronal labeling index was inversely related to blood oxygen level-dependent signal abnormality (P = .016, R2 = 0.21). The blood oxygen level-dependent signal abnormality was also related to tumor infiltration (P = .014) and microvascular proliferation (P = .045). CONCLUSIONS The relationship between local, neoplastic characteristics and a blood oxygen level-dependent biomarker of vascular function suggests that local effects of glioma cell infiltration contribute to vascular dysregulation.
Collapse
Affiliation(s)
- S G Bowden
- From the Department of Neurological Surgery (S.G.B.), Oregon Health & Science University, Portland, Oregon.,The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.)
| | - B J A Gill
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - Z K Englander
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - C I Horenstein
- Department of Radiology (C.I.H.), North Shore University Hospital, Long Island, New York
| | - G Zanazzi
- Pathology and Cell Biology (G.Z., P.C.)
| | - P D Chang
- Department of Radiology (P.D.C.), University of California, San Francisco, California
| | - J Samanamud
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.)
| | - A Lignelli
- Radiology (A.L., J.G.), Columbia University Medical Center, New York, New York
| | - J N Bruce
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.)
| | - P Canoll
- The Gabriele Bartoli Brain Tumor Research Laboratory (S.G.B., B.J.A.G., Z.K.E., J.S., J.N.B., P.C.).,Departments of Neurological Surgery (B.J.A.G., Z.K.E., J.N.B., P.C.).,Pathology and Cell Biology (G.Z., P.C.)
| | - J Grinband
- Radiology (A.L., J.G.), Columbia University Medical Center, New York, New York
| |
Collapse
|
22
|
Fierstra J, van Niftrik C, Piccirelli M, Bozinov O, Pangalu A, Krayenbühl N, Valavanis A, Weller M, Regli L. Diffuse gliomas exhibit whole brain impaired cerebrovascular reactivity. Magn Reson Imaging 2017; 45:78-83. [PMID: 28986176 DOI: 10.1016/j.mri.2017.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Cerebral diffuse gliomas exhibit perilesional impaired cerebrovascular reactivity (CVR), yet the degree of impairment as well as its full spatial extent in the brain remains unknown. With quantitative fMRI, we studied twelve subjects with untreated brain diffuse glioma and twelve healthy controls to assess CVR impairment and determine its distribution throughout the brain. METHODS In a prospective case-control study, quantitative CVR measurements were derived from BOLD fMRI volumes during standardized iso-oxic changes in carbon dioxide. Whole brain CVR was assessed with additional detailed analyses using specific tumor and tissue masks and compared to datasets of healthy controls. RESULTS Whole brain CVR was significantly impaired compared to healthy controls (0.11±0.10 versus 0.28±0.8, p<0.01). All diffuse glioma patients exhibited even more severely impaired intralesional CVR (mean 0.01±0.06). Increasing tumor volume significantly correlated with severity of intralesional CVR impairment (p<0.05, R2=0.38), and whole brain CVR impairment (p<0.05, R2=0.55). CONCLUSION Patients with brain diffuse glioma exhibit intralesional and whole brain impaired CVR with severity correlating to tumor volume. Quantitative fMRI may be entertained to study antitumor therapy efficacy by tracking CVR changes and may have a complementary role to better interpret BOLD associated neurovascular uncoupling.
Collapse
Affiliation(s)
- Jorn Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.
| | - Christiaan van Niftrik
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Antonios Valavanis
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
23
|
Black DF, Vachha B, Mian A, Faro SH, Maheshwari M, Sair HI, Petrella JR, Pillai JJ, Welker K. American Society of Functional Neuroradiology-Recommended fMRI Paradigm Algorithms for Presurgical Language Assessment. AJNR Am J Neuroradiol 2017; 38:E65-E73. [PMID: 28860215 DOI: 10.3174/ajnr.a5345] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Functional MR imaging is increasingly being used for presurgical language assessment in the treatment of patients with brain tumors, epilepsy, vascular malformations, and other conditions. The inherent complexity of fMRI, which includes numerous processing steps and selective analyses, is compounded by institution-unique approaches to patient training, paradigm choice, and an eclectic array of postprocessing options from various vendors. Consequently, institutions perform fMRI in such markedly different manners that data sharing, comparison, and generalization of results are difficult. The American Society of Functional Neuroradiology proposes widespread adoption of common fMRI language paradigms as the first step in countering this lost opportunity to advance our knowledge and improve patient care. LANGUAGE PARADIGM REVIEW PROCESS A taskforce of American Society of Functional Neuroradiology members from multiple institutions used a broad literature review, member polls, and expert opinion to converge on 2 sets of standard language paradigms that strike a balance between ease of application and clinical usefulness. ASFNR RECOMMENDATIONS The taskforce generated an adult language paradigm algorithm for presurgical language assessment including the following tasks: Sentence Completion, Silent Word Generation, Rhyming, Object Naming, and/or Passive Story Listening. The pediatric algorithm includes the following tasks: Sentence Completion, Rhyming, Antonym Generation, or Passive Story Listening. DISCUSSION Convergence of fMRI language paradigms across institutions offers the first step in providing a "Rosetta Stone" that provides a common reference point with which to compare and contrast the usefulness and reliability of fMRI data. From this common language task battery, future refinements and improvements are anticipated, particularly as objective measures of reliability become available. Some commonality of practice is a necessary first step to develop a foundation on which to improve the clinical utility of this field.
Collapse
Affiliation(s)
- D F Black
- From the Mayo Clinic (D.F.B., K.W.), Rochester Minnesota
| | - B Vachha
- Memorial Sloan Kettering Cancer Center (B.V.), New York, New York
| | - A Mian
- Boston University School of Medicine (A.M.), Boston, Massachusetts
| | - S H Faro
- Johns Hopkins University School of Medicine and the Johns Hopkins Hospital (S.H.F., H.I.S., J.J.P.), Baltimore, Maryland
| | - M Maheshwari
- Children's Hospital of Wisconsin (M.M.), Milwaukee, Wisconsin
| | - H I Sair
- Johns Hopkins University School of Medicine and the Johns Hopkins Hospital (S.H.F., H.I.S., J.J.P.), Baltimore, Maryland
| | - J R Petrella
- Duke University School of Medicine, (J.R.P.) Durham, North Carolina
| | - J J Pillai
- Johns Hopkins University School of Medicine and the Johns Hopkins Hospital (S.H.F., H.I.S., J.J.P.), Baltimore, Maryland
| | - K Welker
- From the Mayo Clinic (D.F.B., K.W.), Rochester Minnesota
| |
Collapse
|
24
|
Mallela AN, Peck KK, Petrovich-Brennan NM, Zhang Z, Lou W, Holodny AI. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients. Brain Connect 2016; 6:587-595. [PMID: 27457676 DOI: 10.1089/brain.2016.0432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To examine the functional connectivity of the primary and supplementary motor areas (SMA) in glioma patients using resting-state functional MRI (rfMRI). To correlate rfMRI data with tumor characteristics and clinical information to characterize functional reorganization of resting-state networks (RSN) and the limitations of this method. This study was IRB approved and in compliance with Health Insurance Portability and Accountability Act. Informed consent was waived in this retrospective study. We analyzed rfMRI in 24 glioma patients and 12 age- and sex-matched controls. We compared global activation, interhemispheric connectivity, and functional connectivity in the hand motor RSNs using hemispheric voxel counts, pairwise Pearson correlation, and pairwise total spectral coherence. We explored the relationship between tumor grade, volume, location, and the patient's clinical status to functional connectivity. Global network activation and interhemispheric connectivity were reduced in gliomas (p < 0.05). Functional connectivity between the bilateral motor cortices and the SMA was reduced in gliomas (p < 0.01). High-grade gliomas had lower functional connectivity than low-grade gliomas (p < 0.05). Tumor volume and distance to ipsilateral motor cortex demonstrated no association with functional connectivity loss. Functional connectivity loss is associated with motor deficits in low-grade gliomas, but not in high-grade gliomas. Global reduction in resting-state connectivity in areas distal to tumor suggests that radiological tumor boundaries underestimate areas affected by glioma. Association between motor deficits and rfMRI suggests that rfMRI may accurately reflect functional changes in low-grade gliomas. Lack of association between rfMRI and clinical motor deficits implies decreased sensitivity of rfMRI in high-grade gliomas, possibly due to neurovascular uncoupling.
Collapse
Affiliation(s)
- Arka N Mallela
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,2 Perelman School of Medicine at the University of Pennsylvania , Philadelphia, Pennsylvania
| | - Kyung K Peck
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,3 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Nicole M Petrovich-Brennan
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Zhigang Zhang
- 4 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - William Lou
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,5 Weill Cornell Medical College , New York, New York
| | - Andrei I Holodny
- 1 Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,6 Brain Tumor Center, Memorial Sloan-Kettering Cancer Center , New York, New York
| |
Collapse
|
25
|
Fraga de Abreu VH, Peck KK, Petrovich-Brennan NM, Woo KM, Holodny AI. Brain Tumors: The Influence of Tumor Type and Routine MR Imaging Characteristics at BOLD Functional MR Imaging in the Primary Motor Gyrus. Radiology 2016; 281:876-883. [PMID: 27383533 DOI: 10.1148/radiol.2016151951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate the effects of histologic features and anatomic magnetic resonance (MR) imaging characteristics of brain tumors on the functional MR imaging signal in the primary motor cortex (PMC), as false-negative blood oxygen level-dependent (BOLD) functional MR imaging activation can limit the accurate localization of eloquent cortices. Materials and Methods Institutional review board approval was obtained, and informed consent was waived for this HIPAA-compliant retrospective study. It comprised 63 patients referred between 2006 and 2014 for preoperative functional MR imaging localization of the Rolandic cortex. The patients had glioblastoma multiforme (GBM) (n = 20), metastasis (n = 21), or meningioma (n = 22). The volumes of functional MR imaging activation were measured during performance of a bilateral hand motor task. Ratios of functional MR imaging activation were normalized to PMC volume. Statistical analysis was performed for the following: (a) differences between hemispheres within each histologic tumor type (paired Wilcoxon test), (b) differences across tumor types (Kruskal-Wallis and Fisher tests), (c) pairwise tests between tumor types (Mann-Whitney U test), (d) relationships between fast fluid-attenuated inversion recovery (FLAIR) data and enhancement volume with activation (Spearman rank correlation coefficient), and (e) differences in activation volumes by tumor location (Mann-Whitney U test). Results A significant interhemispheric difference was found between the activation volumes in GBMs (mean, 511.43 voxels ± 307.73 [standard deviation] and 330.78 voxels ± 278.95; P < .01) but not in metastases (504.68 voxels ± 220.98 and 460.22 voxels ± 276.83; P = .15) or meningiomas (424.07 voxels ± 247.58 and 415.18 voxels ± 222.36; P = .85). GBMs showed significantly lower activation ratios (median, 0.49; range, 0.04-1.15) than metastases (median, 0.79; range, 0.28-1.66; P = .043) and meningiomas (median, 0.91; range, 0.52-2.05; P < .01). There was a moderate correlation with the volumes of FLAIR abnormality in metastases (ρ = -0.50) and meningiomas (ρ = -0.55). Enhancement volume (ρ = -0.11) and tumor distance from the PMC (median, 0.73 and range, 0.04-2.05 for near and median, 0.82 and range, 0.39-1.66 for far; P = .14) did not influence activation. Conclusion BOLD functional MR imaging activation in the ipsilateral PMC is influenced by tumor type and is significantly reduced in GBMs. FLAIR abnormality correlates moderately with the activation ratios in metastases and meningiomas. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Vitor Hugo Fraga de Abreu
- From the Functional MRI Laboratory, Department of Radiology (V.H.F.d.A., K.K.P., N.M.P., A.I.H.), the Department of Medical Physics (K.K.P.), the Department of Epidemiology-Biostatistics (K.M.W.), and the Brain Tumor Center (A.I.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and the Department of Radiology, Vestfold Hospital Trust, Tønsberg, Norway (V.H.F.d.A.)
| | - Kyung K Peck
- From the Functional MRI Laboratory, Department of Radiology (V.H.F.d.A., K.K.P., N.M.P., A.I.H.), the Department of Medical Physics (K.K.P.), the Department of Epidemiology-Biostatistics (K.M.W.), and the Brain Tumor Center (A.I.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and the Department of Radiology, Vestfold Hospital Trust, Tønsberg, Norway (V.H.F.d.A.)
| | - Nicole M Petrovich-Brennan
- From the Functional MRI Laboratory, Department of Radiology (V.H.F.d.A., K.K.P., N.M.P., A.I.H.), the Department of Medical Physics (K.K.P.), the Department of Epidemiology-Biostatistics (K.M.W.), and the Brain Tumor Center (A.I.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and the Department of Radiology, Vestfold Hospital Trust, Tønsberg, Norway (V.H.F.d.A.)
| | - Kaitlin M Woo
- From the Functional MRI Laboratory, Department of Radiology (V.H.F.d.A., K.K.P., N.M.P., A.I.H.), the Department of Medical Physics (K.K.P.), the Department of Epidemiology-Biostatistics (K.M.W.), and the Brain Tumor Center (A.I.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and the Department of Radiology, Vestfold Hospital Trust, Tønsberg, Norway (V.H.F.d.A.)
| | - Andrei I Holodny
- From the Functional MRI Laboratory, Department of Radiology (V.H.F.d.A., K.K.P., N.M.P., A.I.H.), the Department of Medical Physics (K.K.P.), the Department of Epidemiology-Biostatistics (K.M.W.), and the Brain Tumor Center (A.I.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and the Department of Radiology, Vestfold Hospital Trust, Tønsberg, Norway (V.H.F.d.A.)
| |
Collapse
|