1
|
Toubasi AA, Cutter G, Gheen C, Vinarsky T, Yoon K, AshShareef S, Adapa P, Gruder O, Taylor S, Eaton JE, Xu J, Bagnato F. Improving the Assessment of Axonal Injury in Early Multiple Sclerosis. Acad Radiol 2025; 32:1002-1014. [PMID: 39277455 DOI: 10.1016/j.acra.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
RATIONALE AND OBJECTIVES Several quantitative magnetic resonance imaging (MRI) methods are available to measure tissue injury in multiple sclerosis (MS), but their pathological specificity remains limited. The multi-compartment diffusion imaging using the spherical mean technique (SMT) overcomes several technical limitations of the diffusion-weighted image signal, thus delivering metrics with increased pathological specificity. Given these premises, here we assess whether the SMT-derived apparent axonal volume (Vax) provides a better tissue classifier than the diffusion tensor imaging (DTI)-derived axial diffusivity (AD) in the white matter (WM) of MS brains. METHODS Forty-three treatment-naïve people with newly diagnosed MS, clinically isolated syndrome, or radiologically isolated syndrome and 18 healthy controls (HCs) underwent a 3.0 Tesla MRI inclusive of T1-weighted (T1-w) and T2-w fluid-attenuated inversion recovery (FLAIR) sequences, and multi-b shell diffusion-weighted imaging. In patients only, pre- and post-gadolinium diethylenetriamine penta-acetic acid T1-w sequences were obtained for the evaluation of contrast-active lesions (CELs). Vax and AD were calculated in T2-lesions, chronic black holes (cBHs), and normal appearing (NAWM) in patients and normal WM (NWM) in HCs. Vax and AD values were compared across all the possible combinations of these regions. CELs were excluded from the analyses. RESULTS Vax differed in all comparisons (p ≤ 0.047 by paired t-test); AD differed in most comparisons (p < 0.001) except between NAWM and NWM, and between cBHs and T2-lesions. Vax had higher accuracy (p ≤ 0.029 by DeLong test) and larger effect size (p ≤ 0.038 by paired t-test) than AD in differentiating areas with even minimal tissue injury. CONCLUSIONS Vax provides a better radiological quantitative discriminator of different degrees of axonal-mediated tissue injury even between areas with expected minimal pathology. Our data support further studies to assess the readiness of Vax as a measure of outcome for clinical trials on neuroprotection in MS.
Collapse
Affiliation(s)
- Ahmad A Toubasi
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.)
| | - Gary Cutter
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL (G.C.)
| | - Caroline Gheen
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.)
| | - Taegan Vinarsky
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.)
| | - Keejin Yoon
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.); University of Central Florida, College of Medicine, Orlando, FL (K.Y.)
| | - Salma AshShareef
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.); Department of Life and Physical Sciences, Fisk University, Nashville, TN (S.A.)
| | - Pragnya Adapa
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.); College of Arts and Sciences, Vanderbilt University, Nashville, TN (P.A.)
| | - Olivia Gruder
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN (O.G., S.T., J.E.E.)
| | - Stephanie Taylor
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN (O.G., S.T., J.E.E.)
| | - James E Eaton
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN (O.G., S.T., J.E.E.); Cognitive Division, Department of Neurology, VUMC, Nashville, TN (J.E.E.)
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Sciences, Departments of Radiology and Radiological Sciences, VUMC, Nashville, TN (J.X.)
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN (A.A.T., C.G., T.V., K.Y., S.A., P.A., F.B.); Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN (F.B.).
| |
Collapse
|
2
|
Seyedmirzaei H, Nabizadeh F, Aarabi MH, Pini L. Neurite Orientation Dispersion and Density Imaging in Multiple Sclerosis: A Systematic Review. J Magn Reson Imaging 2023; 58:1011-1029. [PMID: 37042392 DOI: 10.1002/jmri.28727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Diffusion-weighted imaging has been applied to investigate alterations in multiple sclerosis (MS). In the last years, advanced diffusion models were used to identify subtle changes and early lesions in MS. Among these models, neurite orientation dispersion and density imaging (NODDI) is an emerging approach, quantifying specific neurite morphology in both grey (GM) and white matter (WM) tissue and increasing the specificity of diffusion imaging. In this systematic review, we summarized the NODDI findings in MS. A search was conducted on PubMed, Scopus, and Embase, which yielded a total number of 24 eligible studies. Compared to healthy tissue, these studies identified consistent alterations in NODDI metrics involving WM (neurite density index), and GM lesions (neurite density index), or normal-appearing WM tissue (isotropic volume fraction and neurite density index). Despite some limitations, we pointed out the potential of NODDI in MS to unravel microstructural alterations. These results might pave the way to a deeper understanding of the pathophysiological mechanism of MS. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
3
|
Yoon K, Archer DB, Clarke MA, Smith SA, Oguz I, Cutter G, Xu J, Bagnato F. Transcallosal and Corticospinal White Matter Disease and Its Association With Motor Impairment in Multiple Sclerosis. Front Neurol 2022; 13:811315. [PMID: 35785345 PMCID: PMC9240189 DOI: 10.3389/fneur.2022.811315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose In this cross-sectional, proof-of-concept study, we propose that using the more pathologically-specific neurite orientation dispersion and density imaging (NODDI) method, in conjunction with high-resolution probabilistic tractography, white matter tract templates can improve the assessment of regional axonal injury and its association with disability of people with multiple sclerosis (pwMS). Methods Parametric maps of the neurite density index, orientation dispersion index, and the apparent isotropic volume fraction (IVF) were estimated in 18 pwMS and nine matched healthy controls (HCs). Tract-specific values were measured in transcallosal (TC) fibers from the paracentral lobules and TC and corticospinal fibers from the ventral and dorsal premotor areas, presupplementary and supplementary motor areas, and primary motor cortex. The nonparametric Mann-Whitney U test assessed group differences in the NODDI-derived metrics; the Spearman's rank correlation analyses measured associations between the NODDI metrics and other clinical or radiological variables. Results IVF values of the TC fiber bundles from the paracentral, presupplementary, and supplementary motor areas were both higher in pwMS than in HCs (p ≤ 0.045) and in pwMS with motor disability compared to those without motor disability (p ≤ 0.049). IVF in several TC tracts was associated with the Expanded Disability Status Scale score (p ≤ 0.047), while regional and overall lesion burden correlated with the Timed 25-Foot Walking Test (p ≤ 0.049). Conclusion IVF alterations are present in pwMS even when the other NODDI metrics are still mostly preserved. Changes in IVF are biologically non-specific and may not necessarily drive irreversible functional loss. However, by possibly preceding downstream pathologies that are strongly associated with disability accretion, IVF changes are indicators of, otherwise, occult prelesional tissue injury.
Collapse
Affiliation(s)
- Keejin Yoon
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt University School of Medicine, Vanderbilt Genetics Institute, Nashville, TN, United States
| | - Margareta A. Clarke
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Seth A. Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ipek Oguz
- Department of Science, Vanderbilt University, Nashville, TN, United States
| | - Gary Cutter
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Junzhong Xu
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francesca Bagnato
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|