1
|
Boerwinkle VL, Gillette K, Rubinos CA, Broman-Fulks J, Aseem F, DeHoff GK, Arhin M, Cediel E, Strohm T. Functional MRI for Acute Covert Consciousness: Emerging Data and Implementation Case Series. Semin Neurol 2023; 43:712-734. [PMID: 37788679 DOI: 10.1055/s-0043-1775845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Although research studies have begun to demonstrate relationships between disorders of consciousness and brain network biomarkers, there are limited data on the practical aspects of obtaining such network biomarkers to potentially guide care. As the state of knowledge continues to evolve, guidelines from professional societies such as the American and European Academies of Neurology and many experts have advocated that the risk-benefit ratio for the assessment of network biomarkers has begun to favor their application toward potentially detecting covert consciousness. Given the lack of detailed operationalization guidance and the context of the ethical implications, herein we offer a roadmap based on local institutional experience with the implementation of functional MRI in the neonatal, pediatric, and adult intensive care units of our local government-supported health system. We provide a case-based demonstrative approach intended to review the current literature and to assist with the initiation of such services at other facilities.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kirsten Gillette
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Clio A Rubinos
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jordan Broman-Fulks
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fazila Aseem
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace K DeHoff
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Martin Arhin
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Emilio Cediel
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tamara Strohm
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Kowalski JL, Morse LR, Troy K, Nguyen N, Battaglino RA, Falci SP, Linnman C. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin 2023; 38:103414. [PMID: 37244076 PMCID: PMC10238876 DOI: 10.1016/j.nicl.2023.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/29/2023]
Abstract
Many individuals with spinal cord injury live with debilitating chronic pain that may be neuropathic, nociceptive, or a combination of both in nature. Identification of brain regions demonstrating altered connectivity associated with the type and severity of pain experience may elucidate underlying mechanisms, as well as treatment targets. Resting state and sensorimotor task-based magnetic resonance imaging data were collected in 37 individuals with chronic spinal cord injury. Seed-based correlations were utilized to identify resting state functional connectivity of regions with established roles in pain processing: the primary motor and somatosensory cortices, cingulate, insula, hippocampus, parahippocampal gyri, thalamus, amygdala, caudate, putamen, and periaqueductal gray matter. Resting state functional connectivity alterations and task-based activation associated with individuals' pain type and intensity ratings on the International Spinal Cord Injury Basic Pain Dataset (0-10 scale) were evaluated. We found that intralimbic and limbostriatal resting state connectivity alterations are uniquely associated with neuropathic pain severity, whereas thalamocortical and thalamolimbic connectivity alterations are associated specifically with nociceptive pain severity. The joint effect and contrast of both pain types were associated with altered limbocortical connectivity. No significant differences in task-based activation were identified. These findings suggest that the experience of pain in individuals with spinal cord injury may be associated with unique alterations in resting state functional connectivity dependent upon pain type.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Spaulding Neuroimaging Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th St, Charlestown, Boston, MA, United States; Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Karen Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Scott P Falci
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States; Department of Neurosurgery, Swedish Medical Center, 501 E Hampden Ave, Englewood, CO 80113, United States.
| | - Clas Linnman
- Spaulding Neuroimaging Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th St, Charlestown, Boston, MA, United States; Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
3
|
Nedergaard RB, Hansen TM, Mørch CD, Niesters M, Dahan A, Drewes AM. Influence of tapentadol and oxycodone on the spinal cord and brain using electrophysiology: a randomized, placebo-controlled trial. Br J Clin Pharmacol 2022; 88:5307-5316. [PMID: 35776835 PMCID: PMC9796052 DOI: 10.1111/bcp.15453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS The aim of this study was to investigate the effects of tapentadol and oxycodone using the nociceptive withdrawal reflex and sensory evoked potentials. METHODS Twenty-one healthy volunteers completed a cross-over trial with oxycodone (10 mg), tapentadol (50 mg) extended-release tablets, or placebo treatment administered orally BID for 14 days. Electrical stimulations were delivered on the plantar side of the foot to evoke a nociceptive withdrawal reflex at baseline and post-interventions. Electromyography, recorded at tibialis anterior, and electroencephalography were recorded for analysis of: number of reflexes, latencies, and area under the curve of the nociceptive withdrawal reflex as well as latencies, amplitudes and dipole sources of the sensory-evoked potential. RESULTS Tapentadol decreased the odds ratio of eliciting nociceptive withdrawal reflex by -0.89 (P = .001, 95% confidence interval [CI] -1.46, -0.32), whereas oxycodone increased the latency of the N1 component of the sensory-evoked potential at the vertex by 12.5 ms (P = .003, 95% CI 3.35, 21.69). Dipole sources revealed that the anterior cingulate component moved caudally for all three interventions (all P < .02), and the insula components moved caudally in both the oxycodone and tapentadol arms (all P < .03). CONCLUSION A decrease in the number of nociceptive withdrawal reflex was observed during tapentadol treatment, possibly relating to the noradrenaline reuptake inhibition effects on the spinal cord. Both oxycodone and tapentadol affected cortical measures possible due to μ-opioid receptor agonistic effects evident in the dipole sources, with the strongest effect being mediated by oxycodone. These findings could support the dual effect analgesic mechanisms of tapentadol in humans as previously shown in preclinical studies.
Collapse
Affiliation(s)
- Rasmus Bach Nedergaard
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Tine Maria Hansen
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, SMI, School of MedicineAalborg UniversityAalborgDenmark
| | - Marieke Niesters
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Albert Dahan
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Asbjørn Mohr Drewes
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark,Department of Clinical MedicineAalborg UniversityAalborgDenmark
| |
Collapse
|