1
|
Bédard S, Valošek J, Seif M, Curt A, Schading-Sassenhausen S, Pfender N, Freund P, Hupp M, Cohen-Adad J. Normalizing spinal cord compression measures in degenerative cervical myelopathy. Spine J 2025:S1529-9430(25)00159-7. [PMID: 40154634 DOI: 10.1016/j.spinee.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND CONTEXT Accurate and automatic MRI measurements are relevant for assessing spinal cord compression severity in degenerative cervical myelopathy (DCM) and guiding treatment. The widely-used maximum spinal cord compression (MSCC) index has limitations. Firstly, it normalizes the anteroposterior cord diameter by that above and below the compression but does not account for cord size variation along the superior-inferior axis, making MSCC sensitive to compression level. Secondly, cord shape varies across individuals, making MSCC sensitive to this variability. Thirdly, MSCC is typically calculated by an expert-rater from a single sagittal slice, which is time-consuming and prone to variability. PURPOSE This study proposes a fully automatic pipeline to compute MSCC. DESIGN We developed a normalization strategy for traditional MSCC (anteroposterior diameter) using a healthy adults database (n = 203) to address cord anatomy variability across individuals and evaluated additional morphometrics (transverse diameter, area, eccentricity, and solidity). PATIENT SAMPLE DCM patient cohort of n = 120. OUTCOME MEASURES Receiver operating characteristic (ROC) and area under the curve (AUC) were used as evaluation metrics. METHODS We validated the method in a mild DCM patient cohort against manually derived morphometrics and predicted the therapeutic decision (operative/conservative) using a stepwise binary logistic regression incorporating demographics and clinical scores. RESULTS The automatic and normalized MSCC measures correlated significantly with clinical scores and predicted the therapeutic decision more accurately than manual MSCC. Significant predictors included upper extremity sensory dysfunction, T2w hyperintensity, and the proposed MRI-based measures. The model achieved an area under the curve of 0.80 in receiver operating characteristic analysis. CONCLUSION This study introduced an automatic method for computing normalized measures of cord compressions from MRIs, potentially improving therapeutic decisions in DCM patients. The method is open-source and available in Spinal Cord Toolbox v6.0 and above.
Collapse
Affiliation(s)
- Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Québec, Canada
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Québec, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, H2S 3H1, Québec, Canada; Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 15, Hněvotínská 976/3, Nová Ulice, 779 00 Olomouc, Czechia; Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 15, Hněvotínská 976/3, Nová Ulice, 779 00 Olomouc, Czechia
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Simon Schading-Sassenhausen
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Québec, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, H2S 3H1, Québec, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, 4545, Queen Mary Road, Montreal, H3W 1W4, Quebec, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, 4545 Chem. Queen Mary, Montréal, H3W 1W4, Quebec, Canada.
| |
Collapse
|
2
|
Beltrán S, Reisert M, Krafft AJ, Frase S, Mast H, Urbach H, Luetzen N, Hohenhaus M, Wolf K. Spinal cord motion and CSF flow in the cervical spine of 70 healthy participants. NMR IN BIOMEDICINE 2024; 37:e5013. [PMID: 37533376 DOI: 10.1002/nbm.5013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Pulsatile spinal cord and CSF velocities related to the cardiac cycle can be depicted by phase-contrast MRI. Among patients with spontaneous intracranial hypotension, we have recently described relevant differences compared with healthy controls in segment C2/C3. The method might be a promising tool to solve clinical and diagnostic ambiguities. Therefore, it is important to understand the physiological range and the effects of clinical and anatomical parameters in healthy volunteers. Within a prospective study, 3D T2-weighted MRI for spinal canal anatomy and cardiac-gated phase-contrast MRI adapted to CSF flow and spinal cord motion for time-resolved velocity data and derivatives were performed in 70 participants (age 20-79 years) in segments C2/C3 and C5/C6. Correlations were analyzed by multiple linear regression models; p < 0.01 was required to assume a significant impact of clinical or anatomical data quantified by the regression coefficient B. Data showed that in C2/C3, the CSF and spinal cord craniocaudal velocity ranges were 4.5 ± 0.9 and 0.55 ± 0.15 cm/s; the total displacements were 1.1 ± 0.3 and 0.07 ± 0.02 cm, respectively. The craniocaudal range of the CSF flow rate was 8.6 ± 2.4 mL/s; the CSF stroke volume was 2.1 ± 0.7 mL. In C5/C5, physiological narrowing of the spinal canal caused higher CSF velocity ranges and lower stroke volume (C5/C6 B = +1.64 cm/s, p < 0.001; B = -0.4 mL, p = 0.002, respectively). Aging correlated to lower spinal cord motion (e.g., B = -0.01 cm per 10 years of aging, p < 0.001). Increased diastolic blood pressure was associated with lower spinal cord motion and CSF flow parameters (e.g., C2/C3 CSF stroke volume B = -0.3 mL per 10 mmHg, p < 0.001). Males showed higher CSF flow and spinal cord motion (e.g., CSF stroke volume B = +0.5 mL, p < 0.001; total displacement spinal cord B = +0.016 cm, p = 0.002). We therefore propose to stratify data for age and sex and to adjust for diastolic blood pressure and segmental narrowing in future clinical studies.
Collapse
Affiliation(s)
- Saúl Beltrán
- Department of Neurology and Neurophysiology, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sibylle Frase
- Department of Neurology and Neurophysiology, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjoerg Mast
- Department of Neuroradiology, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Niklas Luetzen
- Department of Neuroradiology, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wolf
- Department of Neurology and Neurophysiology, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Pfender N, Jutzeler CR, Hubli M, Scheuren PS, Pfyffer D, Zipser CM, Rosner J, Friedl S, Sutter R, Spirig JM, Betz M, Schubert M, Seif M, Freund P, Farshad M, Curt A, Hupp M. Potential thresholds of critically increased cardiac-related spinal cord motion in degenerative cervical myelopathy. Front Neurol 2024; 15:1411182. [PMID: 38978814 PMCID: PMC11228334 DOI: 10.3389/fneur.2024.1411182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction New diagnostic techniques are a substantial research focus in degenerative cervical myelopathy (DCM). This cross-sectional study determined the significance of cardiac-related spinal cord motion and the extent of spinal stenosis as indicators of mechanical strain on the cord. Methods Eighty-four DCM patients underwent MRI/clinical assessments and were classified as MRI+ [T2-weighted (T2w) hyperintense lesion in MRI] or MRI- (no T2w-hyperintense lesion). Cord motion (displacement assessed by phase-contrast MRI) and spinal stenosis [adapted spinal canal occupation ratio (aSCOR)] were related to neurological (sensory/motor) and neurophysiological readouts [contact heat evoked potentials (CHEPs)] by receiver operating characteristic (ROC) analysis. Results MRI+ patients (N = 31; 36.9%) were more impaired compared to MRI- patients (N = 53; 63.1%) based on the modified Japanese Orthopedic Association (mJOA) subscores for upper {MRI+ [median (Interquartile range)]: 4 (4-5); MRI-: 5 (5-5); p < 0.01} and lower extremity [MRI+: 6 (6-7); MRI-: 7 (6-7); p = 0.03] motor dysfunction and the monofilament score [MRI+: 21 (18-23); MRI-: 24 (22-24); p < 0.01]. Both patient groups showed similar extent of cord motion and stenosis. Only in the MRI- group displacement identified patients with pathologic assessments [trunk/lower extremity pin prick score (T/LEPP): AUC = 0.67, p = 0.03; CHEPs: AUC = 0.73, p = 0.01]. Cord motion thresholds: T/LEPP: 1.67 mm (sensitivity 84.6%, specificity 52.5%); CHEPs: 1.96 mm (sensitivity 83.3%, specificity 65.6%). The aSCOR failed to show any relation to the clinical assessments. Discussion These findings affirm cord motion measurements as a promising additional biomarker to improve the clinical workup and to enable timely surgical treatment particularly in MRI- DCM patients. Clinical trial registration www.clinicaltrials.gov, NCT02170155.
Collapse
Affiliation(s)
- Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- School of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Carl M Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Susanne Friedl
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - José M Spirig
- University Spine Center Zurich, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michael Betz
- University Spine Center Zurich, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mazda Farshad
- University Spine Center Zurich, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Schilling KG, Combes AJE, Ramadass K, Rheault F, Sweeney G, Prock L, Sriram S, Cohen-Adad J, Gore JC, Landman BA, Smith SA, O'Grady KP. Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord. Magn Reson Imaging 2024; 108:11-21. [PMID: 38309376 PMCID: PMC11218893 DOI: 10.1016/j.mri.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Anna J E Combes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, University of Sherbrooke, Canada
| | - Grace Sweeney
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Prock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kristin P O'Grady
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Pfender N, Rosner J, Zipser CM, Friedl S, Schubert M, Sutter R, Klarhoefer M, Spirig JM, Betz M, Freund P, Farshad M, Curt A, Hupp M. Increased cranio-caudal spinal cord oscillations are the cardinal pathophysiological change in degenerative cervical myelopathy. Front Neurol 2023; 14:1217526. [PMID: 38020663 PMCID: PMC10663304 DOI: 10.3389/fneur.2023.1217526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Degenerative cervical myelopathy (DCM) is the most common cause of non-traumatic incomplete spinal cord injury, but its pathophysiology is poorly understood. As spinal cord compression observed in standard MRI often fails to explain a patient's status, new diagnostic techniques to assess DCM are one of the research priorities. Minor cardiac-related cranio-caudal oscillations of the cervical spinal cord are observed by phase-contrast MRI (PC-MRI) in healthy controls (HCs), while they become pathologically increased in patients suffering from degenerative cervical myelopathy. Whether transversal oscillations (i.e., anterior-posterior and right-left) also change in DCM patients is not known. Methods We assessed spinal cord motion simultaneously in all three spatial directions (i.e., cranio-caudal, anterior-posterior, and right-left) using sagittal PC-MRI and compared physiological oscillations in 18 HCs to pathological changes in 72 DCM patients with spinal canal stenosis. The parameter of interest was the amplitude of the velocity signal (i.e., maximum positive to maximum negative peak) during the cardiac cycle. Results Most patients suffered from mild DCM (mJOA score 16 (14-18) points), and the majority (68.1%) presented with multisegmental stenosis. The spinal canal was considerably constricted in DCM patients in all segments compared to HCs. Under physiological conditions in HCs, the cervical spinal cord oscillates in the cranio-caudal and anterior-posterior directions, while right-left motion was marginal [e.g., segment C5 amplitudes: cranio-caudal: 0.40 (0.27-0.48) cm/s; anterior-posterior: 0.18 (0.16-0.29) cm/s; right-left: 0.10 (0.08-0.13) cm/s]. Compared to HCs, DCM patients presented with considerably increased cranio-caudal oscillations due to the cardinal pathophysiologic change in non-stenotic [e.g., segment C5 amplitudes: 0.79 (0.49-1.32) cm/s] and stenotic segments [.g., segment C5 amplitudes: 0.99 (0.69-1.42) cm/s]). In contrast, right-left [e.g., segment C5 amplitudes: non-stenotic segment: 0.20 (0.13-0.32) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] and anterior-posterior oscillations [e.g., segment C5 amplitudes: non-stenotic segment: 0.26 (0.15-0.45) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] remained on low magnitudes comparable to HCs. Conclusion Increased cranio-caudal oscillations of the cervical cord are the cardinal pathophysiologic change and can be quantified using PC-MRI in DCM patients. This study addresses spinal cord oscillations as a relevant biomarker reflecting dynamic mechanical cord stress in DCM patients, potentially contributing to a loss of function.
Collapse
Affiliation(s)
- Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, Bern, Switzerland
| | - Carl M. Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Susanne Friedl
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Radiology, Balgrist University Hospital, Zurich, Switzerland
| | | | - José M. Spirig
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Michael Betz
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Mazda Farshad
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
6
|
Gibbs WN, Basha MM, Chazen JL. Management Algorithm for Osseous Metastatic Disease: What the Treatment Teams Want to Know. Neuroimaging Clin N Am 2023; 33:487-497. [PMID: 37356864 DOI: 10.1016/j.nic.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Radiologists play a primary role in identifying, characterizing, and classifying spinal metastases and can play a lifesaving role in the care of these patients by triaging those with instability to urgent spine surgery consultation. For this reason, an understanding of current treatment algorithms and principles of spinal stability in patients with cancer is vital for all who interpret spine studies. In addition, advances in imaging allow radiologists to provide more accurate diagnoses and characterize pathology, thereby improving patient safety.
Collapse
Affiliation(s)
- Wende N Gibbs
- Barrow Neurological Institute, Department of Neuroradiology, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Mahmud Mossa Basha
- University of Washington School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - J Levi Chazen
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
7
|
Wolf K, Pfender N, Hupp M, Reisert M, Krafft A, Sutter R, Hohenhaus M, Urbach H, Farshad M, Curt A. Spinal cord motion assessed by phase-contrast MRI - An inter-center pooled data analysis. Neuroimage Clin 2023; 37:103334. [PMID: 36724733 PMCID: PMC9918779 DOI: 10.1016/j.nicl.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Phase-contrast MRI of CSF and spinal cord dynamics has evolved among diseases caused by altered CSF volume (spontaneous intracranial hypotension, normal pressure hydrocephalus) and by altered CSF space (degenerative cervical myelopathy (DCM), Chiari malformation). While CSF seems to be an obvious target for possible diagnostic use, craniocaudal spinal cord motion analysis offers the benefit of fast and reliable assessments. It is driven by volume shifts between the intracranial and the intraspinal compartments (Monro-Kellie hypothesis). Despite promising initial reports, comparison of spinal cord motion data across different centers is challenged by reports of varying value, raising questions about the validity of the findings. OBJECTIVE To systematically investigate inter-center differences between phase-contrast MRI data. METHODS Age- and gender matched, retrospective, pooled-data analysis across two centers: cardiac-gated, sagittal phase-contrast MRI of the cervical spinal cord (segments C2/C3 to C7/T1) including healthy participants and DCM patients; comparison and analysis of different MRI sequences and processing techniques (manual versus fully automated). RESULTS A genuine craniocaudal spinal cord motion pattern and an increased focal spinal cord motion among DCM patients were depicted by both MRI sequences (p < 0.01). Higher time-resolution resolved steeper and larger peaks, causing inter-center differences (p < 0.01). Comparison of different processing methods showed a high level of rating reliability (ICC > 0.86 at segments C2/C3 to C6/C7). DISCUSSION Craniocaudal spinal cord motion is a genuine finding. Differences between values were attributed to time-resolution of the MRI sequences. Automated processing confers the benefit of unbiased and consistent analysis, while data did not reveal any superiority.
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurology and Neurophysiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel Krafft
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Reto Sutter
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Mazda Farshad
- University Spine Center Zurich, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|