1
|
Bei M, Zheng Z, Xiao Y, Liu N, Cao X, Tian F, Zhang L, Wu X. Effects of alendronate on cartilage lesions and micro-architecture deterioration of subchondral bone in patellofemoral osteoarthritic ovariectomized rats with patella-baja. J Orthop Surg Res 2024; 19:197. [PMID: 38528611 DOI: 10.1186/s13018-024-04677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Patellofemoral osteoarthritis (PFJOA) is a subtype of knee OA, which is one of the main causes of anterior knee pain. The current study found an increased prevalence of OA in postmenopausal women, called postmenopausal OA. Therefore, we designed the ovariectomized rat model of patella baja-induced PFJOA. Alendronate (ALN) inhibits osteoclast-mediated bone loss, and has been reported the favorable result of a potential intervention option of OA treatment. However, the potential effects of ALN treatment on PFJOA in the ovariectomized rat model are unknown and need further investigation prior to exploration in the clinical research setting. In this study, the effects of ALN on articular cartilage degradation and subchondral bone microstructure were assessed in the ovariectomized PFJOA rat model for 10 weeks. METHODS Patella baja and estrogen withdrawal were induced by patellar ligament shortening (PLS) and bilateral ovariectmomy surgeries in 3-month-old female Sprague-Dawley rats, respectively. Rats were randomly divided into five groups (n = 8): Sham + V; OVX + V, Sham + PLS + V, OVX + PLS + V, OVX + PLS + ALN (ALN: 70 μg/kg/week). Radiography was performed to evaluate patellar height ratios, and the progression of PFJOA was assessed by macroscopic and microscopic analyses, immunohistochemistry and micro-computed tomography (micro-CT). RESULTS Our results found that the patella baja model prepared by PLS can successfully cause degeneration of articular cartilage and subchondral bone, resulting in changes of PFJOA. OVX caused a decrease in estrogen levels in rats, which aggravated the joint degeneration caused by PFJOA. Early application of ALN can delay the degenerative changes of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent, improve and maintain the micrometabolism and structural changes of cartilage and subchondral bone. CONCLUSION The early application of ALN can delay the destruction of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xinjiekoudongjie 31, Xicheng Dis, Beijing, 100035, People's Republic of China
| | - Zhiyuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Yaping Xiao
- The Department of Orthopedic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 241, Pengliuyang Road, Wuhan, 430000, People's Republic of China
| | - Ning Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Xuehui Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Emergency General Hospital, Xibahenanli 29, Chaoyang District, Beijing, 100028, People's Republic of China
| | - Xinbao Wu
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xinjiekoudongjie 31, Xicheng Dis, Beijing, 100035, People's Republic of China.
| |
Collapse
|
2
|
Scanu A, Luisetto R, Pavan M, Guarise C, Beninatto R, Giraudo C, Galuppini F, Lazzarin V, Guzzardo V, Pennelli G, Galesso D, Masiero S. Effect of intra-articular injection of a hyaluronic acid-alendronate conjugate on post-traumatic osteoarthritis induced by destabilization of the medial meniscus in rats. Sci Rep 2023; 13:20692. [PMID: 38001135 PMCID: PMC10673944 DOI: 10.1038/s41598-023-46965-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by pain and cartilage damage. Intra-articular (i.a) viscosupplementation with hyaluronic acid (HA) is frequently used for the management of OA. Preclinical studies have reported that bisphosphonates (BPs) may have a therapeutic potential to slow down or reverse the progression of OA. Among these, alendronate (ALN) has demonstrated chondroprotective effects in both in vitro and vivo experiments. This study evaluated the effects of a novel alendronate-hyaluronic acid (ALN-HA) conjugate on an OA in vivo model induced by medial meniscus destabilization (DMM). DMM surgery was performed on the knees of Sprague Dawley rats that received, after four weeks, one intra-articular (i.a.) injection of: (1) ALN-HA; (2) HA; (3) sodium chloride (NaCl). Sham-operated rats were used as control. Allodynia was assessed by Von Frey test. Joint degeneration was evaluated eight weeks after treatment by micro-computed tomography (micro-CT), histology, and immunohistochemistry. Collagen cross-linked C-telopeptides (CTX-I and CTX-II) serum levels were determined by ELISA. Paw withdrawal threshold increased in ALN-HA group when compared to rats treated with NaCl or HA. Micro-CT did not show differences between ALN-HA, HA and NaCl groups. ALN-HA injection produced significant improvements in articular cartilage degeneration showing an OARSI score lower than those of HA and NaCl, and reduced matrix metalloproteinase (MMP)-13, MMP-3, interleukin-6, vascular endothelial growth factor and Caspase-3 expression. CTX-I was reduced after ALN-HA treatment when compared to NaCl. Our results indicate that i.a. use of ALN after conjugation with HA limits OA development and progression in the rat DMM model, and may lead to the development of novel therapeutic strategies in OA management.
Collapse
Affiliation(s)
- Anna Scanu
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, 35128, Padua, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, 35128, Padua, Italy
| | - Mauro Pavan
- R&D-Discovery, Fidia Farmaceutici SpA, Via Ponte della Fabbrica, 3/a, 35031, Abano Terme, Italy.
| | - Cristian Guarise
- R&D-Discovery, Fidia Farmaceutici SpA, Via Ponte della Fabbrica, 3/a, 35031, Abano Terme, Italy
| | - Riccardo Beninatto
- R&D-Discovery, Fidia Farmaceutici SpA, Via Ponte della Fabbrica, 3/a, 35031, Abano Terme, Italy
| | - Chiara Giraudo
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, 35128, Padua, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine-DIMED, University of Padova, 35128, Padua, Italy
| | - Vanni Lazzarin
- Surgical Pathology Unit, Department of Medicine-DIMED, University of Padova, 35128, Padua, Italy
| | - Vincenza Guzzardo
- Surgical Pathology Unit, Department of Medicine-DIMED, University of Padova, 35128, Padua, Italy
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine-DIMED, University of Padova, 35128, Padua, Italy
| | - Devis Galesso
- R&D-Discovery, Fidia Farmaceutici SpA, Via Ponte della Fabbrica, 3/a, 35031, Abano Terme, Italy
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, 35128, Padua, Italy
| |
Collapse
|
3
|
Lambova SN, Ivanovska N, Stoyanova S, Belenska-Todorova L, Georgieva E, Batsalova T, Moten D, Apostolova D, Dzhambazov B. Changes in the Subchondral Bone, Visfatin, and Cartilage Biomarkers after Pharmacological Treatment of Experimental Osteoarthritis with Metformin and Alendronate. Int J Mol Sci 2023; 24:10103. [PMID: 37373251 DOI: 10.3390/ijms241210103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Subchondral bone that has intense communication with the articular cartilage might be a potential target for pharmacological treatment in the early stages of osteoarthritis (OA). Considering the emerging data about the role of adipokines in the pathogenesis of OA, the administration of drugs that influence their level is also intriguing. Metformin and alendronate were administered in mice with collagenase-induced OA (CIOA) as a monotherapy and in combination. Safranin O staining was used for the assessment of changes in subchondral bone and articular cartilage. Before and after treatment, serum levels of visfatin and biomarkers of cartilage turnover (CTX-II, MMP-13, and COMP) were assessed. In the current study, the combined administration of alendronate and metformin in mice with CIOA led to the protection against cartilage and subchondral bone damage. In mice with CIOA, metformin led to a decrease in visfatin level. In addition, treatment with metformin, alendronate, or their combination lowered the level of cartilage biomarkers (CTX-II and COMP), while the level of MMP-13 was not influenced. In conclusion, personalized combination treatment in OA according to clinical phenotype, especially in the early stages of the disease, might lead to the identification of a successful disease-modifying therapeutic protocol in OA.
Collapse
Affiliation(s)
- Sevdalina Nikolova Lambova
- Department of Propaedeutics of Internal Diseases, Faculty of Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nina Ivanovska
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stela Stoyanova
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | | | - Elenka Georgieva
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Desislava Apostolova
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|